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| . | nt roducti on

The devel opnent of software, especially conplex, real-tine
software or general - purpose software intended for wi de
applicability, consunes a substantial amount of tinme and noney.
For this reason, the software industry adopted, subsequent to a
NATO conference in 1969 where Doug Mlroy first introduced the
concept, a goal of reusing software conponents. Over the two
and one-half decades since, software reuse has increased in sone
si tuati ons, but nost students of t he state of
sof t war e- devel opnent practice agree that MIlroy's origina
vision has yet to be achieved and that increased reuse of
software conponents is possible and remains a goal worth
pursuing. Over the sanme twenty-five years, students of software
engi neering have come to wunderstand that all of software
devel opnment involves reuse in some form Even where software is
not reused, know edge about a problem donain or about software
design or about programm ng constructs is nost certainly reused
-- drawn from books or from the heads of experienced analysts,
desi gners, and progranmers.

The present paper addresses reuse of design know edge as
applied to developnent of real-time, concurrent software. The
thesis is that design know edge (from experienced designers and
from textbook design nethods) can be codified as know edge in a
design assistant, and that such a design assistant can be
coupled to a dommin analysis and nodeling technique to inprove
the ability of inexperienced designers to produce conpetent,
concurrent designs for real-tine software. The approach
advocated in this paper is unique in several facets. First, the
proposed approach distills heuristics from several real-tine,
design nmethods into a set of expert rules. Thi s approach has
previously only been tried wth transform analysis from
structured analysis and design. Second, the proposed approach



couples the design assistant rules to a domain nodeling
t echni que. The result is a generator that can help to produce
specific designs from domain nodels. Most other donmain nodeling
approaches either: 1) attenpt to match domain nodel outputs to
preexisting designs or 2) to transform domain nodels to software
conmponents. Third, the proposed approach can be used with any
domai n nodeling technique, or with any object-oriented analysis
nmet hod, that can represent the analysis as a network of objects
(possibly connected to external devices) that comunicate by

passi ng nessages. As a result of this trait, the proposed
approach can be applied to assist in generating concurrent
designs from any object-oriented analysis nethod. Fourth, the
proposed approach can help to identify essential infornmation

that the analysis failed to supply, can elicit the m ssing
information, and then can facilitate the retention of that
information for future use. Most ot her approaches based on
domain analysis and nodeling require that the analyst acquire
all information needed for subsequent transformations before
such transformations are conducted. Fifth, the proposed
approach produces a representation of a concurrent design that
i s independent of any specific purpose. Wth appropriate tools,
the resulting design can be represented graphically or printed,
can be analyzed for performance characteristics, can be
sinmulated to assess the function and performance of the design

or can be translated, either automatically or by hand, into an
i mpl enment ati on. Most other approaches result in specific
representations intended for specific purposes.

A strategy underlying the reuse of design know edge, as
proposed in this paper, appears in Section |V, Autonmating The
Reuse O Design Know edge. In addition to a strategy, Section
|V presents several general and specific goals that notivate the
proposed approach. Following this discussion of goals, the
section identifies specific research problens that nust be



solved in order to achieve the goals. The section closes with a
consideration of the benefits expected to accrue from achieving
t he goal s.

To provide a better technical understanding of the proposed
approach, Section V contains a snall exanple based on a sinple,

real -time application. The exanple defines and denonstrates
sel ected design heuristics for structuring (e.g., active-object
identification, passive-object assignnment, and active-object
cohesion) and for defining task interfaces (e.g., identifying
Inter-task nessages, interrupts, timers, signals, and data).
Appendix B contains output from a CLIPS [GAR93, d AR89
i npl enmentation of the exanple. Since the exanple uses only a

subset of the possible heuristics, Appendix A proposes a nore
conplete set of design rules. Section V closes wth a
consideration of other issues that should be addressed for a
conplete treatnent of the expertise needed to design concurrent
sof t war e.

Prior to presenting the nain points of the paper, covered in
Sections IV and V, tw sets of background material are included.
Section 11, Software Reuse, describes briefly the notivation
behind software reuse and the kinds of reuse that can occur
during software develop. A nore extensive discussion discloses
the range of problens that inhibit successful reuse. The
section closes wth a review of four recognized approaches to
reuse: 1) mass-market software, 2) software design nethods, 3)
automated programmng, and 4) domain analysis and nodeling.
Section 111, Related Research, exanm nes sone specific research
activities that address the reuse of software devel opnent
know edge.

A concluding section (VI) provides a summary of the ideas
advanced in this paper. Sof tware design know edge, applicable
to concurrent, real-tine systenms, can be codified in an expert
system and then coupled to a domain nodeling technique in order



to assist in the generation of concurrent designs for specific
systens within a domain. That sane expert system can also
support generation of concurrent designs from object-oriented
anal yses. The exanple included within this paper denonstrates
the feasibility of the proposed approach. The paper also
outlines a series of research problens that nust be solved to
achi eve the goals and benefits that appear possible.

I1. Sof t war e Reuse

Sof tware production conprises one of the nobst dynamic growth
i ndustries of the 1990's, wth expansion expected into the
foreseeable future; however, the productivity of software
developers is not particularly great, nor is the quality of
software products particularly high

Software production is a rapidly expanding multibillion dollar
busi ness. The products conming from this business, however, are
far from satisfactory. Thus, around 1970, the term software
crisis energed. Because a crisis is sonething that is overcone
after a linmted period, the term is not used anynore; however,
the problenms are worse today, at least from the user’s point of
view. [BIBE91, p. 405]

Sone i nherent properties of software contribute to the | ow

productivity and poor quality exhibited by the software

I ndustry. [BROB7] Software products are constructed from

conpl ex, custom conponents; such conponents do not scale up

froma repetition of small elenents in larger sizes in the

manner that electronic parts can. Software products are

expected to conformto the interfaces of existing human

processes and systens, no matter how conpl ex such interfaces may

be. All successful software nust accommopdate change in order to

nmeet new requirenents and to adapt to new environnents. And

software remai ns invisible, and cannot be visualized. Since

t hese inherent properties of software seemto inpose limts on

the abilities of devel opers to produce high-quality software at



cost-effective rates, corporations seek to naxinmi ze their
i nvestnment in software devel opnment by striving to reuse software
as much as possi bl e.

Successful reuse of software conponents leads to increased
productivity anong software developers, to inproved quality in
the delivered products, and to nore cost-effective software
mai nt enance. [ CAV89] Such inprovenents could prove valuable to
organi zati ons that depend on conputer software. Boehm estinates
that by 1995 a 20% i nprovenent in software productivity will be

worth $90 billion worldw de. [BCEH37] This estimate, made in
1987, could prove low as society’'s nmjor sectors - comercial,
government, and mlitary - beconme increasingly reliant on

software. And such reliance falls nost heavily on software that
al ready exists. Mst estimates place the percentage of software
devel opnent resour ces spent on mai nt enance (perfective,
adaptive, and corrective) between 60-80% and 75% of that effort
goes to perfective and adapti ve nai nt enance. [FlISC92, BALZ83]

There is anple evidence to suspect that reuse can becone a
normal part of software devel opnment practice. For exanple, a
study of business software systens at Raytheon M ssile Systens
Division found that 60% of all designs and code (in their COBOL
prograns) were redundant and could be reused. [LANG34] Anot her
st udy of California comer ci al banki ng and i nsurance
applications found that approximately 75% of the software
functions were common to nore than one program and concl uded
that less than 15% of the code witten for such applications is
uni que, novel, or specific; the remaining 85% appeared to be
generic. [JONEs4] Wiile reuse targets of 60-85% appear feasible,
actual results |ag. For exanple, Matsunoto reported in 1984
that 50% of the lines of code delivered in products from the
Toshi ba software factory were reused; [mTSUs4] and a 1989 study
of NASA projects found software reuse rates of only 32% [CURT89]



Al though the reuse of software conponents trails what m ght
be achieved, reuse of conponents alone does not reveal the
entire picture about reuse in software devel opment. Prieto-Diaz
defines two | evels of software reuse: 1) ideas and know edge and
2) artifacts and conponents. [PRIE873] Whenever a progranmer
creates software he is reusing know edge that he already
possesses, whether through training, education, experience, or a
conbi nati on of these. [CURT89] On a larger scale, progranm ng
projects reuse a nassive anmount of know edge, including software
devel opnent process know edge. Thus, initiatives such as that
of the Software Engineering Institute to docunent, refine, and
pronote inproved software devel opnent processes provi de exanples
of reuse of ideas and know edge to devel op software. Pr obabl y
the nost productive reuse of know edge to develop software
obtains today from reuse of trained software devel opnment
personnel . [ MEYES7]

O her exanples of know edge reuse for software devel opnment
abound. A huge commercial market exists for books describing
data structures and algorithms, and for teaching about the
nature and application of those algorithns and data structures.
[ STAN84] Anot her exanple of know edge reuse is adoption of and
adherence to technical standards and conventions. [RCEg9] Going
even further toward tangible know edge, buying commerci al
software, including so-called 4Gs, can be viewed as reuse of
know edge and i deas. [BOEH87] Brooks describes a burgeoni ng, nass
mar ket for software prograns that can be applied to specific
tasks, and he proposes to:

equi p the conputer-naive intellectual workers ... with
personal conputers and good ... witing, draw ng,

file, and spreadsheet prograns and then [to] turn them
| oose. The sane strategy, carried out with
general i zed mat hemati cal and statistical packages and

sonme sinple programm ng capabilities, will also work
for ... laboratory scientists. [BROO87, p. 16-17]



Introduction of comrercial software products blurs the |ine
bet ween know edge and artifacts. Since software artifacts and
conponents enbody ideas and know edge, the reuse levels
introduced by Prieto-Diaz perhaps have nore to do wth
representation: know edge and ideas being intangible until they
are represented; once represented in human-readable form they
becone artifacts, and when they reach a machi ne-executable form
they can be considered software conponents. Bet ween these two
extremes of artifacts and conponents, expert systens permt
knowl edge to be captured, represented, and used to assist human
devel opers to perform the tasks necessary to produce software.
The key point of the preceding discussion is that software
devel opers need to reuse nore than code. (In fact, it is
difficult to define reusable conponents apart from a context;
and a context can include the requirenents, a specification, a
system architecture, another program or software subsystem and
a test plan and test cases. [CALD91]) The reuse of conponents
al ways includes the reuse of know edge; and know edge is al ways
required to reuse conponents.

The software developnent industry has achieved noderate
success in the reuse of know edge (through books, training, and
college curricula) and has shown recent signs of success in the
reuse of mass-narket software applications for word-processing
for spreadsheets, for drawing, and for mathematical analysis.
In the areas of specialized software, for custom applications
and particularly for real-tinme processing, the ability of
devel opers to reuse software (and even know edge) is |less
evident. The reasons for this |ack of success are nany.

In a previous paper, the author divides reuse problenms into
four categories: 1) technical, 2) cognitive, 3) nanagenent, and

4) economc. [MLL92] For the reader already famliar wth
software reuse inhibitors, Table I1-1 gives a Ilist of the
problens allocated to each of the four categories. For ot her
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readers, each of the problens indicated in Table I1-1 is
di scussed briefly below, beginning with the hard technical
probl ens.

A key inhibitor to software reuse is the scant popul ation of
reusabl e conponents. otaining qualified candidates for reuse
is difficult, and adapting submtted code to a reusable formis
expensi ve. [CAvVA89] Software is not often designed for reuse, and
even when so designed, witing reusable code is difficult.
[ RAMAS6G, MEYES7] Code can be too specialized and often includes
too many representational details. [ STANS4] For exanpl e,
Bi ggerstaff points out that:

Tablell-1. Software Reuse Inhibitors Classified As Technical, Cognitive, Management, and Economic

Technical Cognitive Management Economic

Population Programmer Acceptance  Commitment Intellectual Property
Classification Protection
Location and Retrieval Novice Programmer Measurment Marketing

Evaluation

Adaptation Force-fit Return-On-Investment
Granularity

Composition Generalization

Documentation and

Representation
Requirements

Specification
[ M odul es becone less ... reusable the nore specific
t hey becone because it is nore ... difficult to find
an exact match of detailed specifics. Mdules
subtlely encode ... specific information about a
vari ety of things: operating systens, run-tine
i brary, hardware equi pnent, ... data packagi ng,

I nterface packaging, and so forth. [BIG387, p. 43]
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And yet, separating a reusable software conponent from a
specific context is difficult. [CALD91]
Anot her reason for the paucity of reusable conponents is a

| ack of producers. Most software devel opment occurs on a
project basis; yet projects wll never be an appropriate place
to create reusable software. Projects are hindered by a
deadline focus, lack w de domain know edge, and |ack a reuse

perspective. [CALD91] Production of reusable conmponents is also
inhibited by |lack of accepted franmeworks or system architectures
I nto which conponents can be integrated. [WRF90]

Assuming that a large population of reusable conponents
exi sts, other problens elevate in significance. One such issue
is classification. By what attributes should reusable
conponents be described and classified to enable effective
search and retrieval by potential users? Defining an approach
that enabl es discrimnation between very simlar conmponents is a
particularly difficult classification problem [PRI E87] Even if
an acceptable classification is posited, locating and retrieving
conponents would not be trivial. The search space could be
i mense. Hel ping a programrer retrieve a group of reuse
candi dates seens achievable, but allowng a programmer to find
the closest match against stated requirenments appears much nore
difficult. [RAMASE]

Wth a candidate set of reusable conponents in hand, the
eval uati on problem | oons. There are two facets to this problem
how close to the requirenments does each candidate match and how
easily reusable is each candidate? In nany cases, reusability
relates not only to the conponent itself, but also to the degree
of reuse experience that the progranmer possesses. In one
study, by Wodfield, 51 developers (25 fromindustry and 26 from
a university) were given 21 software conponents and asked to
determine if each conponent could be reused to satisfy a
particul ar specification. [wW0D87] The study resulted in four
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findi ngs. First, programrers untrained in reuse could not
evaluate the ability of a reuse candidate to satisfy
i npl enmentation criteria. Second, programmers untrained in reuse
are influenced by sone issues that are uninportant and are not
i nfluenced by sonme issues that are inportant. Third, no groups
of programmers could be identified as performng significantly
better or worse in judging reusability. Finally, if a
programer judged that the work needed to reuse code was |ess
than 70% of the effort required to build the code from scratch,
t hen the conmponent was chosen for reuse.

Havi ng successful ly sel ect ed a reusabl e component,
programmers typically nust overcone the adaptation problem A
programer nust understand a conmponent in order to nodify it.
[CURT89] Depending on the match between the progranmmer’s need and
the reuse conponent, the software mght require conversion to a
different operating system or programm ng |anguage or hardware
envi ronnent . In addition, the conponent interfaces m ght not
match the interfaces expected. [NOvA92] Wien required to adapt
reusabl e code, the tendency anong programmers it to copy and
nodi fy. [CAvA89] To avoid copying, a nunber of problens nust be
sol ved. For exanple, who owns and has responsibility for the
conponent? How are the conponents maintained and synchronized
with the release of products that incorporate then? [LENz87] How
can reusable code be kept available in a form that works on
mul ti pl e conputing pl atforns? [CAVA89]

Sel by investigated reuse at the National Aeronautics and
Space Administration (NASA), examning 25 software systens
ranging in size from 3,000 to 112,000 lines of code, and found
adaptation to be an inportant factor affecting reuse. [SELB89]
He found that nodules that tended to be reused w thout revision
had: 1) fewer calls to other nodules per lines of code, 2)
sinpler interfaces, 3) less interaction with human users, and 4)
hi gher ratios of comrents to |lines of code. Such nodul es were
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generally small; thus, did not conpose a significant part of a
typi cal software devel opnent effort.

Selby’s investigation introduces the granularity problem
Identified by Biggerstaff. [BIG37] Smal | er, sinpler conponents
tend to be reused nore because the population is large and
evaluation and adaptation are easy, though finding smaller
conponents can be hard and the payoff is usually |ow Lar ger
conponents tend to be reused |ess often because the popul ation
Is low and evaluation and adaptation are hard, though finding
such conponents is easy and the payoff can be high. Ganularity
of reusable conponents influences the conposability of the
conponents into a whol e.

To be successful, reuse schenes nmnust provide ... robust
mechani snms to insure reliable and neani ngful parts conposition.”
[RICE89, p. 125] Two different approaches exist to conpose systens
from conponents. One approach relies on standards for
communi cation and data interchange. [JONE84] In this nodel,
reusabl e conponents, which are assuned to be fairly large, are
connected together via communication channels, and data is
exchanged between conponents in a standard format. The second

approach relies on a standard architecture into which conponents

can be linked using a range of different mechani sns. [ W RF90
JONES4]
Two remaining technical I ssues nmerit menti on: t he

docunentation and representation problem and the requirenents
speci fication problem Docunent ati on requirenments for reusable
conponents are at least as rigorous as for any other software

probably nore rigorous. The docunentation nust facilitate the
understanding needed to evaluate and adapt conponents; for
| arge, reusable conponents this is critically inportant, but
very difficult. Docunentati on nust include a specification, a
desi gn, a design rationale, constraints on reusing the
conponent, and test cases. [CALD91] How should this information
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be represented? Another difficulty stens from user requirenents
statenments which trigger software reuse. Users often express
their requirenents in a form that can disguise cues that m ght
otherwi se trigger recognition of appropriate reuse. [CURT89]

Aside from these nine technical problens, reuse is inhibited
by human nature as well. [MEYE87, CURT89, SAGE90] Experi enced
programmers tend to view their work as creative, and they
interpret reuse as routine application of old technology.
Programmers also possess a certain pride of authorship and
believe that they can do the job better than others.
Programmers tend to distrust software devel oped by those they do
not know. Also, the work required to understand the code of
others is not nornmally viewed by programmers as interesting.
Programmers tend to believe that they wll not get credit for
wor k that incorporates |arge anmounts of reusabl e code.

Novi ce progranmers deserve special discussion. [CURT89] The
short-term nenory of humans can handle about seven (plus or
m nus two) concepts at one tine. To overcone this limtation,
experienced programmers chunk conplex concepts together under
| abel s, and then the mnd can process seven |abels. The | abels
refer to information stored in hierarchical, semantic networks
in a programrer’s long-term nenory. Expert  programmers
effectively encode new infornmati on and map, conpare, and anal yze
that information against the broad base of know edge that they
al ready possess. As a result, novice programmers, who m ght
benefit nost from reusable software, are not as equipped to
identify, analyze, and evaluate candidates for reuse as are
experienced progranmers.

Wiile programming experience provides sone advantages
regarding software reuse, other aspects of experience |oom as
i mpedi nment s. For exanple, programrers will often try to force
the application requirenents to fit a structure or pattern for
which they know a solution, even if the solution fails to
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satisfy sone of the original specifications. [CURT89] As anot her
exanple, programmers mnmight be required to abstract genera

concepts out of specific inplenmentations to form a reusable
conponent that applies across nultiple domains. Wen a
programmer possesses too much experience in a given domain,

general i zi ng conponents outside of that domain can be difficult.
[ MEYES7, CURT89]

Asi de from programrers, nmanagers also play a role in software

reuse; unfortunately, reuse often suffers from a |ack of
managemnent comi t nment . Building a library of reusabl e
conponents takes tinme and costs noney. Managers can seldom

identify the potential for a good return on the required
expense. Even when nmanagers are inclined to establish a
program and to evaluate the results as tinme goes by, the

nmeasurenent problem interferes. [CAVA89] What neasures will
denonstrate increased productivity and inproved quality? | f
nmeasures can be defined, then how will the necessary data be

col | ect ed?

On a corporate scale, managenent issues are perceived in
econonmi c terns. If a conpany delivers software that is too
general and too reusable, then managenent night fear |osing the
usual follow on business of nai ntenance and enhancenents. [MEYES7]
In addition, individual programmers or small conpanies that
m ght choose to produce reusable software conponents have no
sure neans of collecting for their efforts because their code
can be easily <copied and distributed. [ COX92] Even if
intellectual property rights <could be protected, how can
reusabl e conponents be mar ket ed?

Despite these nmany problens, the software industry shows
steady progress in reusing both conmponents and know edge, and
addi tional prospects can be expected as the result of several
research directions. One of the npbst obvious areas of progress
appears in the mass markets for software running under de facto
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standard operating systens (and in sone cases  hardware
conponents as well). Over the past decade, two huge narkets for
sof tware bl ossoned: 1) a market for scientific and engi neering
wor kst ations (pioneered by SUN) and 2) a market for office and
honme conputing (pioneered by IBM Intel, and Mcrosoft). In
each of these markets, certain de facto standards devel oped for
operating systens (UNIX in one and DOS and Wndows in the
other), for wuser interfaces (based on graphical w ndows), and
for certain hardware capabilities (networking attachnents and
hard disk capacities). As a result of these nmarkets,
substantial investnents have been nade throughout the software
i ndustry. A nunber of user-interface frameworks (for exanple,
X-wi ndows and Ms-W ndows), data conmuni cations packages (e.g.,
TCP/ I P, DCE, and DME), and dat abase managenent systens have been
constructed to fit within the structures provided by these de
facto standards. In addition, a wde range of applications
(word processors, spreadsheet s, drawi ng prograns, and
mat hemati cal and statistical analysis packages) are available in
the market to support the needs of a growi ng population of
conmput er users. Already, the seeds of a new narket for
mul ti medi a conputi ng can be seen.

Wiile this mass narket provides reusable software for nany
people, the range of applications remains limted to those that
can support office workers, students, engineers, and |aboratory
scienti sts. No such mass market exists for real-tine software
in applications, such as hone appliance control, aircraft
command and control, autonobile nonitoring and control, factory
aut omati on, process control, nedical nonitoring and neasurenent,
retail shopping automation, telecomunications processing, and
sSo on. The state of affairs in the narketplace for real-tine
software finds no consensus on operating systens (or even on the
need for an operating system per se), on hardware architectures,
on software architectures, or even on whether high-Ievel
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| anguages provide a suitable basis for building real-tine
syst ens. This lack of a mass market for real-tine software
exi sts despite the fact that the anmount of npbney spent on such
software probably exceeds that spent on nore conventional
applications, and also despite the fact that such systens have
an increasing potential to affect the health and safety of
unwitting users (that is, people who rely on the software
wi t hout necessarily being aware that it exists).

Lacking a nmass mnmarket for reusable conponents, reuse in
real -time software takes other forns. Over the past fifteen
years, analysis and design nmethods have been adapted for use in
real -tinme software (several of these nmethods are described in
Section 111). These net hods generally provide: 1) a notation
for specifying requirenents, 2) a notation for representing
designs, 3) a process to follow to analyze user requirenents
statenents and to produce designs, and 4) heuristics for making
speci fication and design decisions. The latter three of these
el enents represent know edge about anal ysis and design. Mnual
sof t war e-desi gn nethods make this know edge avail able for reuse
by witing it down (usually in a textbook form. When a
desi gner applies one of these nmethods to a specific problem he
then reuses the know edge enbodied in the nethod. In sone
cases, design nethods are supported by so-called conputer-aided
software engineering (CASE) tools that help a user to represent
the analysis and design in the proper notation. Usual Iy the
CASE tool can check for consistency and conpl et eness between the
two representations. These tools provide no other assistance
for the process of specifying the problem or for designing a
sol ution.

Sonme research approaches attenpt to further automate the

desi gn process. These approaches (specific exanples are cited
and explained in Section [I1l) generally fall into three
cat egori es: 1) automatic progranm ng, 2) end-user progranmm ng,
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and 3) design assistants. Aut omatic progranm ng approaches
attenpt to nove froma fornmal statement of user requirenents to
wor ki ng sof tware wi t hout requiring addi ti onal human
i ntervention. To acconplish such a goal, many kinds and |evels
of know edge nust be captured, represented, and used. In the
nost anbi tious automatic programm ng systens, this know edge can
i ncl ude domai n-specific know edge, progranm ng know edge,
mat hemati cal know edge, hardware know edge, and even conmon
sense. In nost automatic progranm ng systens, the problem
specification really turns out to be a statenent of a solution
nmet hod. [ BROO87] There are exceptions when the problem domain
can be characterized by a small nunber of paraneters, where many
known solutions can populate a library of alternatives, and
where extensive analysis yields specific rules for selecting a
solution for the given set of problem paraneters.

Rat her than <creating a solution for users, end- user
progranm ng systens interact with users to create solutions to
application problenms. As with automatic programm ng approaches,
the goal is to nove from user needs to working solutions wthout
great expense and tineg; however, in end-user programi ng
approaches, human intervention is expected as the solution
devel ops. For exanple, the user need not wite her needs in a
formal |anguage, but mght instead converse wth an expert
assistant to help define her problem to tentatively select a
strategy for solution, to exercise the solution, and then to
correct any problens that occur. This node of operation tends
to limt these approaches to applications that are interactive,
t hat tolerate anbiguity and error, and that are not
time-critical

While automatic and end-user programr ng approaches attenpt
to inprove productivity and user satisfaction by renoving the
anal yst, designer, and programrer from the devel opnent process,
automat ed design assistants attenpt to represent know edge about
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design strategies in sone form often in an expert system that
can assi st a human designer to nake the nany deci sions needed to
transform a requirenents specification into an architectura

desi gn. The power of a design assistant increases with an
increasingly rich know edge-base. Most design assistants
reported to date attenpt to apply rules (such as transform
anal ysis from structured design) to transform data flow di agrans
(produced by structured analysis) into structure charts that
represent a sequential design. The potential exists to create
concurrent designs using expert assistants that represent the
ri cher knowl edge now only enbedded in nanual, design nethods for
real -tinme systens.

The nost powerful contribution by expert systens wl|
surely be to put at the services of the inexperienced
programer the experience and accunul ated wi sdom of
the best programrers. This is no small contribution.
The gap between the best software engineering practice
and the average practice is very wde - perhaps w der
than in any other engineering discipline. A tool that
di ssem nates good practice would be inportant.
[ BROOB7, p. 15]
No currently available design assistant encapsul ates the best
engi neering practice for real-tine software design. Section 1V
presents a strategy for achieving this objective in concert with
dormai n anal ysi s and nodel i ng.

Domain analysis attenpts to generalize all systens in an
application domain, that is, to produce a donain nodel that
transcends specific applications. [PRIES7a] Although no accepted
definition for representing a domain nodel exists, remarkable
simlarity can be seen anong researchers regarding the content
of such a nodel. Jacobsen and Lindstrom descri be a domai n nodel
as the set of domain objects (including their attributes and
functions) and the relationships between them [JACD1] Thi s
description mrrors that of other domain analysis and nodeling

researchers. [ARAN8S9, GOVA92, |SCO88, PRI E87a] Gonma and |scoe each
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add to their description of a donain nodel the set of rules that
can be wused to conpose, generalize, and specialize domin

obj ect s. The di sagreenent anong researchers regarding a
representational form for a domain nodel seens to be notivated
by differences in the use that each intends for the nodel. Sone
researchers, such as Gomma and |scoe, intend to use the domain

nodel as input to any of a nunber of transformational program
generators. Qhers, such as Prieto-Diaz, aimonly to facilitate
reuse of domain concepts; here, the domain nodel is represented
as a specific, wunique |anguage that can be used by hunman
analysts to create specifications for individual systens within

t he donai n. Still others, such as Arango, want to represent
information that will allow a domain nodel to trigger specific
I nstances of reusable conponents. Different than all of these

approaches, Jacobson and Linstrom prefer a graph representation
of the domain because they aimto build a nodel that facilitates
reasoni ng about system nodifications.

In summary, reuse of developnment know edge and software
conponents can potentially increase the productivity of software
devel opers and the quality of software products. Although this
potential was first recognized twenty-five years ago, a host of

techni cal, human, and economc problens have limted software
reuse to date. During the past decade, the energence of a nass
mar ket for of fice, hone, scientific, and engi neering
applications has accelerated software reuse; however, in the

|l arger realm of real-time and custom software applications no
such acceleration has occurred. A nunber of research approaches
propose to inprove this situation. Sonme of these approaches are
described and critiqued in the next section.
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I1l. Related Research

As practiced today, software analysis and design rely heavily
on reusing design knowl edge represented wthin textbooks,
university courses, and industry training prograns. A nunber of
such anal ysis and design nethods are surveyed in the literature.
[ GOMA93a,  YAUS6] Due to the popularity of <certain of these
net hods, sonme researchers propose neans for automating them
O her researchers envision elimnating design nmethods altogether
either by automatically transform ng problem specifications to
i npl enmentations, or by helping users to interactively develop
i npl enmentations w thout an analyst. [LOARS2, SIM®B6] A nmin thrust
of current research regarding software reuse applies a range of
techni ques to generate or adapt software from reusabl e nodel s of
application donains. These research efforts are revi ewed bel ow.

Sof t wvar e Desi gn Met hods

The earliest, effective analysis and design nethod conbined
structured analysis [DEMA78] W th structured design [YOUR79]
Structured analysis (SA) provides a sinple, yet effective,
method for representing and conprehending a range of data
processing systenms using a process, or transformoriented, view
of a software problem In SA, a systemis seen as a series of
steps that transform incomng data into outgoing data. Each
step is represented by a circle (called a transforn) that
perfornms sone processing (described in pseudo-code) on incom ng
data (denoted by directed arcs) to produce system outputs (also
noted by directed arcs). Devices, processes, and people outside
of the system are denoted by rectangles, while data repositories
within the system are denoted by two, parallel lines. A
conmplete set of transfornms, directed arcs, parallel |ines and
rectangl es conposing a SA system description is called a data
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fl ow diagram (DFD). A conplete, SA specification can consist of
a hierarchical set of DFDs because each transform at one |evel
can be described by another DFD at the next |ower |evel of
detail. The result of applying structured analysis is a set of
di agrans representing the data flow into a system anong a set
of transfornms within the system and then out of the system

Gven a structured analysis specification for a system a
software designer nust <create a plan for a program that
satisfies the specification and that can be coded by
programmers. The nost accepted nethod for creating such a plan,
when the resulting program is to be sequential, 1is called
structured design (SD). [YOUR79] Structured design identifies
desirabl e properties of a sequential, program design, provides a
set of heuristics for transforming a SA specification into such
a design, and also gives a notation for representing the design.
The software properties of concern in SD include: 1) nodul e
size (between 10 and 100 statenents), 2) span of control (seven,
plus or mnus two), 3) fan-in (nmaxim ze within other constraints
such as high nodul e cohesion), and 4) scope of effect/scope of
control (for any given decision, the scope of effect should be a
subset of the scope of control of the nodule containing the
deci si on).

In addition to a set of desirable goals, SD provides a nean
to transform a DFD into a design. Bef ore considering the
transformation process, a short sunmary of the design notation
is in order. A structured design is a hierarchical, nodule,
structure chart. Each nodule is represented by a rectangle,
with wunconditional flow of <control between a superior and
subordinate nodule represented by a directed arc. Condi ti onal
flow of control is shown by augnmenting the directed arc with a
di anond. Paraneter flows (both in and out) and control flag
flows (both in and out) between nodules are represented by
directed arcs that parallel the control flow arcs. The tail of

23



paraneter flow arrows possess hollow circles, while the tail of
control flag flow arrows possess solid circles.

Gven a DFD, the process of «creating a structure chart
requires four steps. First, the afferent (incomng) and
efferent (outgoing) data transfornms are identified. The effect
of this analysis is to separate the DFD into branches of three
kinds: input, processing, and output. Next, a first-|evel
factoring is performed that creates a top-level (or main) nodul e
and a second-|evel nodule for each branch identified previously.
The third step is to factor each branch; separate, factoring
strategies are recomended for each type of branch. The fi nal
step, requires the designer to deal with any departures fromthe
usual . For exanple, sone branches may contain a mx of afferent
and efferent transforns. As a final set a suggestions,
structured design includes comobn verbs that can be used to
assi gn nodul e nanes.

Al though structured analysis and design provide useful
not ati ons and approaches for designing many standard, software
applications that admt sequential solutions, the w der range of

software problens, including real-tine systens and concurrent
processing, can benefit from additional techniques. For this
reason, researchers have developed real-tine variants of

structured anal ysis and desi gn.

Real -Time Structured Analysis (RTSA) augnents SA wth
additional semantics and notations to nodel events and control
[WARD85]  The primary inprovenents nade by RTSA include: contro
transforns and event fl ows. Control transfornms, represented by
circles enclosed in dashed |lines, are used to encapsul ate state
transition diagrams (STDs) that order asynchronous events
flowwng into a system to control the processing and outputs of
the system In place of psuedo-code, each control transformin
a RTSA specification is supplenmented by a STD that describes the
control functions of the transform Al inputs to and outputs
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from RTSA control transfornms are in the form of event flows,
represented by dashed, directed arcs. Event flows can be
further classified as triggers or enable/disable swtches.
Triggers represent events flowng into a control transform or
cause a data transform to be activated for one execution of the
processing represented by the transform Enabl e/ di sabl e events
turn a data transform on or off. Once a data transform is
enabl ed, the processing contained therein continues until the
transformis disabl ed.

G ven a RTSA specification, nmethods are needed for a designer

to create a plan for a concurrent, software solution. Sever a
researchers describe such nethods. For exanple, Gomaa proposes
a Design Approach for Real-Tinme Systens (DARTS). [GOWA84, GOVA93a]

DARTS includes a set of heuristics for deconposing a DFD
(augnmented with control transforns and events, and thus called a
control and DFD, or CDFD) into a set of concurrent tasks.
Further heuristics address the problem of inter-task nessage
comuni cation and synchronization between tasks and shared
nodul es. Once tasks and shared nodules are identified, DARTS
relies on SD for designing the sequential processing required
within each task. In his later witings about DARTS, Gonma al so
describes a notation for representing the concurrent design. In
DARTS, parallelograns denote tasks and nodul es are represented
with rectangles. Each operation encapsulated within a nodule is
represented by a small rectangle protruding from the |arger
nodul e rectangl e. DARTS also includes graphic notations for
representing a range of inter-task nmessaging nechani sns,
i ncl udi ng: | oosel y-coupl ed nessages into queues (or priority
gueues), tightly-coupled nessages with and wthout reply, and
event signals.

Ni el sen and Shumate propose a simlar approach for designing
real -time systenms (with Ada) from DFDs. [N EL88, N EL87] Ni el sen
and Shunate make two, restricting assunptions not nade by Gomaa:
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1) the system specification uses only DFDs (that is, uses SA)
and 2) the target programming |anguage is Ada. These
assunptions affect the nunber and form of heuristics, as
recommended by Nielsen and Shumate, needed to transform a DFD
specification into a concurrent design. Overall, the heuristics
proposed by Nielsen and Shumate can be considered a subset of
t he nore conprehensive heuristics recommended by Gomma.

The anal ysis and design nethods discussed to this point are
based on process-oriented techniques. O her nethods, nore
recently conceived, rely on object-oriented techniques. One
early attenpt to blend object-oriented approaches with real-tine
structured analysis (RTSA) resulted in a Concurrent bject-Based
Real -Ti ne Anal ysis (COBRA) nethod. [GOW3a] COBRA augnents RTSA
by adding the ability to represent objects (in addition to data
and control transfornms) on C DFDs. An object can be discerned
on a COBRA diagram as a circle |labeled with a noun (transforns
are |labeled with verbs). A circle outlined in a solid line
denotes a data, algorithm or device object, while a dashed
outline identifies a control object. For data, algorithm or
device objects, incomng, directed arcs identify the operations
supported by the object. Beyond these object-oriented
addi ti ons, COBRA provides a technique called behavioral -scenario
analysis to help the analyst <create an effective COBRA
speci fication.

Gomaa augments his COBRA technique with an adaptation of
DARTS, now called the COncurrent Design Approach for Real-Tine
Systens (CODARTS), that shows a designer how to create a
concurrent design and a nodule structure from a COBRA
speci fication. [ GOMA93a] In addi ti on, CODARTS  supports
distributed designs by giving heuristics for deconposing a
system into |oosely-coupled subsystens that can be distributed.
Wiile the subsystem deconposition heuristics are new, CODARTS
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builds on the sanme extensive set of task and nodul e structuring
criteria first proposed for DARTS.

Anot her concurrent analysis and design approach that builds
on object-oriented nodeling concepts is Entity-Life Modeling
(ELM proposed by Sanden. [SAND94, SAND89, SAND89a] ELM nodels a
problem with two basic conponents: entities with life (called
t hreads) and resources (called objects). This nodeling approach
results in a natural inplenmentation of threads as Ada tasks and
objects as Ada nodul es. Threads are identified by analyzing a
problem in search of entities that have life. Qoj ects are
uncovered by Jlooking for resources that are used by the
entities. ELM avoids the need for heuristics to map from
analysis to a concurrent design because the analysis itself
produces a concurrent specification. In addition, Sanden
believes that ELM results in fewer processes when conpared wth
alternative approaches (such as those described above and the
obj ect-oriented approaches described below). As currently
defined, ELM requires an execution environment where tasks share
an address space. This limtation restricts ELM to
non-di stri buted applications.

Wiile the advent of Ada and growh in real-tine applications
encouraged research into analysis and design nmethods for
concurrent software, research into abstract-data-type theory,
and the evolution of related, progranm ng |anguages, spurred the
devel opnment of analysis and design approaches based on an
obj ect-orientation. The first such approach, object-oriented
devel opnment (OOD) is reported in the literature by Booch. [Boocoi,
BOOC86] Booch describes a design approach that structures a
system into objects (rather than the operations that had been
used up to that tinme in DFDs). From that point, each object is
augnented with the operations supported, the attributes
represented, and the relationships to other objects. Booch’ s
approach inproves the conceptual nodel of systens by replacing
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the wuse of |loose functions wth objects that encapsulate
functi ons. Al t hough Booch’s target domains were prinmarily
real -tinme systems, OOD provides little guidance for mapping an
obj ect-oriented design to concurrent tasks.

Since Booch’s nodel focused on the design and codi ng phases
of software devel opnent, he recognized a need to couple OOD to
sonme analysis nethod. One such nmethod is object-oriented
anal ysis (O0A) as proposed by Coad and Yourdon. [COAD92, COAD91]
OCA includes a set of analysis activities coupled with a
notation for representing the results. The results of an OOA
analysis are represented as a five layer nodel: 1) the subject
| ayer, 2) the class-and-object |layer, 3) the structure |ayer, 4)
the attribute layer, and 5) the service |ayer. The first OOA
activity examnes the problem domain to identify objects and
cl asses. bjects are abstractions that represent problem
entities and that encapsulate attribute values and services
(i.e., operations). A class is a set of objects that have
uniform attributes and services (i.e., a class is an object
type). bjects and classes tend to be stable, Ilong-Ilived
concepts in a problem domain. Each object and class identified
is represented as a three-segnent rectangle with the name of the
object/class being placed in the top segnent (the next two
segnents are reserved for attributes and services).

The second OOA activity structures the objects and classes
into 1) a generalization and specialization hierarchy and 2) an
aggregati on hierarchy. After developing a structural nodel,
Coad and Yourdon require the analyst to group related objects
and classes and then to establish a subject (like a subsystem
representing each group. The fourth OOA activity defines
attributes for each object and cl ass.

The final activity of an OOA requires the analyst to define
services for each object and class; this includes a
specification of the service interface, a description of the
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detail ed behavior perforned bel ow each service, and a schenmatic
showi ng what nessages are exchange between objects. Det ai | ed
service behaviors are described by flowharts or by state
transition diagranms, depending on which is nore appropriate for
a particular service. Messages exchanged between objects are
shown as directed arcs that are keyed to textual descriptions.

Wil e OOA does provide a |ink between user requirenents and a
design technique such as OOD, OOA has only a limted ability to
nodel concurrency and to specify requirenents for real-tine
appl i cations. Two nore conplete approaches exist: hj ect
Model i ng Techni que (OMI) [RuvB91] and Obj ect Lifecycles. [SHLA92]

hj ect Modeling Technique facilitates problem analysis
through three conplenentary nodels: an object nodel, a dynamc
nodel, and a functional nodel. The OMI object nodel provides a
rich set concepts, including generalization and specialization,
aggregation, mnultiple inheritance, general, keyed relationships
bet ween objects, and constraints. As one would expect, the
graphic notation for describing these concepts becones quite
i nvolved. OMI"s object nodel adds a few extensions (constraints
and general relationships) beyond OOA, but in the area of
dynam ¢ behavior nodeling, the wealth of concepts that OMI can
represent far surpasses those available with OOA

OMTI proposes the use of scenarios and event traces (simlar
to the behavioral-scenario analysis of COBRA) to establish
obj ect -t 0- obj ect behavior flow. Wthin objects, OMI adopts the
Statechart notation and semantics devel oped by Harel. [HARE90]
Statecharts can represent concurrency both anmong and wthin
objects. In addition, Statecharts allow an analyst to represent
hi erarchi es of concurrency. OMI also attenpts to treat the
concepts of inheritance together with concurrency by providing
some rules of thunb. For exanple, given a state transition
di agram (STD) representing an object’s behavior, a subclass of
that object, inheriting the STD, nmay not add new states nor
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transitions to the inherited STD. Wil e such rules of thunb
provi de good cautions, their practical nerits remain limted
because a superclass is unlikely to enbody the entire behavior

of every subclass of an object. More realistically, subclasses
will include new attributes and services that require additiona
states and transitions; thus, the analyst mght be forced to

rewite the superclass STD to include the new states and
transitions each tinme a new subclass is defined.

The final OMI nodel, the functional nodel , descri bes
conputations within a system The functional nodel consists of
multiple DFDs showing the flow of data through the system in

terms of operations. The details of the OMI functional node
are not well-integrated with either the object nodel or the
dynam ¢ nodel . A nessage exchange nodel, nore along the lines

of the one included with OOA, mght yield better results.

As with Booch’s OOD, the OMI provides |ittle useful guidance
for structuring the object nodel into concurrent tasks and
nodul es. OMI' suggests that a system architecture denoting
subsyst ens be selected from anobng a set of typi cal
architectures, or be developed uniquely for an application.
Once an architecture is established, OMI recommends distributing
the objects anpbng the subsystens in a fashion suitable for the
specific problem Per haps OMI presupposes that the objects
identified conprise a set of reusable code that can be allocated
into a set of reusable architectures. (Later sections of this
review of related research describe sonme proposals for such an
approach.)

The Object Lifecycles (OLC) nethod advocated by Shlaer and
Mel | or enconpasses an approach to object-oriented analysis that
results in a design and inplenmentation that enulates the

anal ysi s. In a fashion simlar to OMI, the OLC nethod vyields
three nodels of a system +the information nodel, the state
nodel, and the process nodel. The information nodel divides a
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probl em into subsystens that contain objects and any associ ated
attributes, services, inheritance, and other relationships.
Three docunents conprise an information nodel. The information
structure diagram (sonetines called an entity-relationship
di agran) graphically depicts the overall relationships between
obj ect s. The object and attribute descriptions and the
rel ati onship descriptions |ist and define each object, and their
attributes, and the relationshi ps between objects.

The OLC state nodel represents each object in terns of states
and transitions between states. The state nodel representation
uses a formof state transition diagram (STD), conparable to the
kind used in RTSA and COBRA In OLC, events can cone from
external sources, from other objects, or from system tiners.
OLC reconmends that inheritance from the information nodel can
be conbined with the state nodel by restricting changes in the
st at e-based behavior of each instance of an object. For
exanpl e, an object’s behavior can be defined by the superclass
and subclass at «creation tinme and remain fixed thereafter.
Alternatively, OLC allows the state-based behavior of a subclass
to be fornmed by using a subset of the superclass behavior. For
special cases, OLC allows an analyst to docunent alternative
behaviors for different subclasses in a single, superclass STD,
although this violates to a great degree the concept that a
supercl ass should possess no know edge of specific subcl asses.
In addition to the internal behavior of objects, OLC enables the
analyst to describe the dynamc behavior of relationships
bet ween obj ect s.

To raise the consideration of dynam c behavior to a system
| evel, OLC provides a nodel for object conmunication. Thi s
nodel represents objects and the asynchronous nessages and
par anet ers exchanged between objects. The nodel, used to follow
the systenis response to arriving external events, can form the
basis of a sinulation of systemw de behavi or.
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The process nodel conprises the third systemview facilitated
by OLC. Here, the focus is on the details within actions (that
is, the transitions associated with entering particular states
in a STD); these details are represented using DFDs. Coupl ed
with the process nodel is an object access nodel that depicts
t he synchronous nessages and paraneters exchanged between state
nodel s and internal, object data.

To transform an OLC analysis nodel into an object-oriented
design, Shlaer and Mellor advocate mapping the nodel onto a
preexisting, |lowlevel, run-tinme nodel. The required, run-tine
nodel rmust support five concepts: 1) a main program 2) a
finite-state nachine, 3) a transition, 4) a tinmer, and 5) an
active instance (i.e., task). Wth such underlying nechani smns,
I mpl ementing the system becones an exercise in enulating the
anal ysi s nodel. Each task, perhaps activated by a tinmer,
encapsulates a finite-state machine that selects an event,
identifies a transition to fire, invokes the actions associated
with the transition, and then selects another event. Shlaer and
Mellor identify active classes as those where a state machine is
associated with each instance; ot her classes are passive.
Wthin each active class (and appropriate passive classes) the
passive behavior of a state nachine is represented by an
"assigner" class. Al'l messages sent between active classes are
assumed to be asynchronous and also of equal priority. In
addition, all active classes are called from the main program
whi ch presumably acts as a task switcher, enforcing any priority
requirenents.

From the foregoing review of research related to software
design nethods several observations seem relevant. First,
obj ect-oriented t echni ques provi de nor e power f ul ,
probl emnodeling facilities than earlier, process-oriented
t echni ques. This suggests that nobst domain analysis and
nodel i ng nethods wi Il incorporate object-oriented techniques for
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analysis and specification. Second, heuristics, originally
devel oped for mappi ng between control and data flow diagrans and
concurrent tasking architectures, must be adapted to work from
obj ect-oriented specifications. The only neans of nmaking this
mapping to date require, as with ELM or OLC, that active objects
be identified during the analysis. ELM also requires that

inter-task messaging and synchronization issues be considered
during the analysis, while O.C assunmes that all nessage
exchanges between active objects are asynchronous. Third,

software analysis and design nethods target specific systens,

rather than famlies of systens. (Below, a review of donain
analysis and nodeling research identifies analysis approaches
that can be applied to famlies of systens.)

Aut omat i ng Sof t ware Desi gn Met hods

Sonme researchers have proposed (seni-)automated nechanisns
for transforming a requirenents specification into a software
desi gn. Three such approaches described in the Iliterature
i nvolve transformng data flow diagrans (that is, a structured
analysis specification) into structure charts (representing a
sequenti al design).

Tsai and Ridge describe a Specification-Transformation Expert
System ( STES) t hat automatically translates a software
requi renents specification (expressed as DFDs) into a sequenti al
design (expressed as structure charts). [TSAlS8g] The STES,
I npl emented using the OPS5 expert-system shell, encapsul ates the
structured design nethod of Yourdon and Constantine wthin
rul es. The DFDs and the structure charts in STES are
represented as structured facts. STES uses several textbook
heuristics, including coupling, cohesion, fan-in, and fan-out,
to guide the design process. Each data flow in a DFD has an
associated data dictionary entry that can be used by STES to
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gauge the degree of coupling between nodules in a structure
chart. Determ ning cohesion anong functions is difficult for an
expert system and so a wuser is consulted for information
required to make inferences about functional cohesion. STES
attenpts to maximze fan-in and tries to achieve a noderate span
of control

STES operates as a sequential set of phases. First, the DFD
is factored into afferent, efferent, and transformcentered
branches. This factoring results in a top-level design for the

structure chart. Second, each nodule at the next |evel of the
structure <chart is refined wusing textbook guidelines for
coupling, cohesion, fan-in, and fan-out. Third, the resulting,

multilevel, structure chart is rendered using a CASE system from
Cadre Technol ogi es.

A different approach to transform DFDs into a structured
design is enbodied in a system called Conputer-Aided Process
Organi zati on (CAPO). [KARI88] The goal of CAPO is to relieve a
designer from using techni ques such as transform and transaction

analysis to create structure charts. CAPO represents DFDs as
fl ow graphs (nodes are transfornms and edges are data flows). A
flow graph is converted into six matrices: 1) an incidence

matri x (showing the relationship between files and transforns),
2) a precedence nmatrix (showing direct, data flows between
transforns), 3) a reachability matrix (showing whether an
i ndirect path exists between pairs of transfornms), 4) a partial,
reachability matrix (used to determ ne the precedence violations
needed to conpute a matrix of feasible groupings), 5) a nmatrix
of feasible groupings for transforns, and 6) a matrix of timng
rel ati onships. The set of matrices are used by CAPO to conpute
an interdependency weight for the links joining each pair of
transforns. Using these weights, the flow graph is converted
into a weighted, directed graph. The weighted graph is then
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deconposed into a set of non-overlapping subgraphs using a
nunber of cluster anal ysis techniques.

A third approach, described by Boloix, Sorenson, and
Trenblay, to automatically transform DFDs to structure charts is
based on an entity-aggregate-relationship-attribute (EARA)

nodel . [BOLO2] Here, DFDs are described formally using an EARA
nodel . Then, transformation rules, based on set theory, are
used to convert the formal, DFD description into a formal

description of structure charts. The transformation is applied
at the lowest |evel of deconposition of the DFD. The DFD is
partitioned into sets that m ght becone corresponding partitions
in a structure chart. The transformation rules, defined with a
granmar, carefully draw the boundaries between the system and
external entities, so that the resulting structure chart

captures only the autonated processes of the system As a
general guideline, transforms are napped to nodules on the
structure chart. Data flows are napped to input and output
paraneters in the structure chart. Then, nodul es are added t hat

do not have corresponding transforms on the DFD (for exanple,
control nodul es, nodules for access to data stores, and accept,
validation and display nodul es  that connect flows to
term nators). Certain additional nodules can be created wth
human i ntervention. Once the transformations are conpleted, a
set of rough structure charts are generated. A hunan analyst is
required to inprove the structure charts.
Bol oi x, Sorenson, and Trenblay report that a

significant anount of research is needed in this area of
transformati ons. Mre research nust be undertaken on the nature
of the participation of the oracle in various nethodol ogi es.
Addi tional research is needed on the problem of transform ng one
Oor nmore source environnents into one or nbre target environnments.
[ BOLOO2, p. 437]

They further point out that additional research is needed
regarding the nmanagenent of changes nmade to the transforned
version of a specification so that traceability from the
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original specification can be naintained. Finally, they
i ndicate that nmethods for applying netrics to evaluate
transforned designs require investigation.

A fourth approach, reported in the literature by Lor and
Berry, transforns requirenents into a design, but wthout using
DFDs as the source and structure charts as the target. [LORO1]
This sem -aut omat ed, know edge- based, approach was devel oped by
Lor as the subject of a Ph.D. dissertation within the context of
the System ARchitects Apprentice (SARA), a joint devel opnent of
researchers at UCLA and the University of Wsconsin. [ESTRS6]
Before discussing Lor’s nmethod of transformation, a  brief
description of SARA is in order.

The goals for SARA are six: 1) to allow reasoned
consideration of hardware and software tradeoffs, 2) to support
building nodels of a systenis operating environnent, 3) to
separate system structure from behavior, 4) to enable early
detection of design flaws, 5) to facilitate conposition,
i npl ementation, and testing of designs, and 6) to assist
I ndi vi dual designers in a manner nost confortable to them To
acconplish these goals, SARA conprises tools for nodeling
structure and behavior. A structure |anguage (SL) enables
designers to specify a fully-nested, hierarchical structure of
nodul es and nodul e i nt erconnections (using a nodul e
i nt erconnection | anguage). A behavioral nodel (based on the
UCLA G aph Model of Behavior, or GWwW') allows designers to
specify, analyze, and sinulate the dynamic operation of a
desi gn. Analysis and sinulation of GVB specifications is
supported by a range of tools. For exanple, given a GWB
specification, a control flow analyzer can build reachability
graphs; a GWB simulator can derive stochastic queuing nodels
from GWB speci fications.

! The UCLA Graph Model of Behavior, with appropriate restrictions, is equivalent to a
Petri net model.
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Lor builds on the SARA environnment by providing automated
assistance to help a designer transform a requirenents
specification into a SARA structural nodel and GVB. Lor uses
DFDs and system verification diagranms (SVDs) to specify

requirenents. SVDs provide a stimulus-repsonse nodel of
behavi or t hat Lor uses to specify interactions between
subsystens within a design. DFDs are then used to specify the

i nterior of subsystens.

Lor chose a rul e-based approach for his design assistant for
two reasons. First, since the current set of rules for
transformng requirements into SARA designs is inconplete,
| ocking the knowl edge into a procedural program is premature.
Second, the sequence of rule firings provides a natura
explanation facility as to why specific design choices are nade.
The design assistant enconpasses 21 rules for building the
structural nodel, 59 for synthesizing the control domain, and 37
for nodeling the data domain. A SARA structural nodel is
synt hesi zed by a direct translation of the hierarchy of DFDs;
at the |lowest |evel of deconposition, the data flows map to SARA
domain primtives. A SARA GWB is created from the
stinmul us-response nodel provided by the SVDs, as well as from
t he DFDs.

Lor reports t hat hi s research provi ded a better
under st andi ng, and a nethodi cal approach, to designing systens
within the SARA environnent. The rules encapsulated in the
design assistant are syntactically conplete because every
possi bl e requirenents construct is covered. The rules are not,
however, conplete in the sense that alternative designs cannot
be considered and that the rules cannot nap each requirenents
elenent to a precise design construct. A human designer rust
select the target requirenments specification, nust answer

2 The paper only describes the transformation into the GMB because that was the focus of

Lor’s dissertation.
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queries as the design progresses (to provide needed information
and to indicate preferences), and nust inprove the resulting
desi gn once generation is conplete. Gven the sane requirenents
specification technique (i.e., SVDs and DFDs), Lor believes that
hi s approach could be adapted to other design representati ons by
rewiting the rule consequents; however, since the nost crucial

step in Lor’'s approach is developing formal definitions,
represented by SARA constructs, for every construct in his
requi renents | anguage, adapting to another design representation
woul d require that this nost crucial step be repeated.

Anot her automated assistant that attenpts to bridge between
requi renents and design is Fickas’ Critter [FICK92], based on an
earlier tool known as ditter [FICKoo], that targets conposite
designs, those containing a mxture of human, hardware, and
sof tware conponents. Critter uses an artificial intelligence
paradi gm of state-based search, relying on a human user to
provide the domain know edge necessary to guide the search.
Critter encapsul ates only domai n-independent, design know edge.

Critter and a human designer interact to develop a design to

solve a domain-specific problem To date, the results wth
Critter are not encouraging. Critter’s Ilimted reasoning
techniques prevent its wuse on large software engineering

problens; the analysis algorithnms used in Critter are too slow
for an interactive design system Critter’s know edge-base and
representation omt several classes of system design concepts.
Fischer and Helm describe experience with another form of
aut omat ed, design assistant. [FIsc92] Their approach is to enbed
interactive problemsolving tools into a know edge- based, design
environnment for specific, application donains. By choosing a
domai n-speci fic approach they hope to reduce the semantic gap

bet ween t he probl em speci fication | anguage and t he
sof tware-i npl enentati on | anguage. Their approach supports a
reuse paradigm of locate (using a Catal ogExplorer tool),
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conprehend (using an Explainer tool), and nodify (using a
Modifier tool) in the very narrow domain of graphic-plotting

applications witten in LISP. The three, intelligent tools
operate on design objects stored in a catalog of LISP prograns
for plotting data. The Catal ogExplorer helps to identify
candi date conponents by asking the user a series of appropriate
guesti ons. Some very detailed knowedge 1is needed to
di stingui sh between concepts within the domain. The Expl ai ner

presents exanples of candidate algorithnms from multiple views:
code, diagram sanple plot, and text. These views operate at
quite a low level. The Mdifier helps a user adapt a particular
conponent to nmeet the user’s needs, and then to update the
Cat al ogExplorer and the Explainer to account for the new
vari ant.

Fi scher and Hel m report a nunber of |essons from experiences
with their system First, finding appropriate reusable concepts
is difficult for a wuser. Subj ects seeking to understand a
concept asked questions only about LISP and plotting (and not
about the specific, application domain in which the plotting was
to take place). The graphic viewers aided conprehension (but
this may be because the domain involved the plotting of data).
The help texts provided by the Mdifier proved insufficient to
enabl e successful program adaptation. Users appeared to have
difficulty deconposing nodification tasks into a set of ordered
st eps.

The plan for another automated, design assistant, called the
Design Apprentice (DA), is reported in the literature by Waters
and Tan. [WATE91] Unli ke the autonated assistants discussed up to
this point, the DA ains to refine an already existing high-Ievel
design into a detailed, program design. The DA works within the
context of a larger system known as the Programrer’s
Apprentice. [RICHs8]
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The Programmer’s Apprentice intends to support all phases of
sof tware devel opnent from requirenments anal ysis through software
testing. [RIcH88a] The apprentice and the progranmer communicate
t hrough a body of shared know edge about progranm ng techni ques.
This knowledge is stored in a library of standard clichés that
represent a model for the domain of computer programming. A
programmer describes a specification in a formal notation,
called a Plan Calculus, and the Programmer's Apprentice reasons
about the needed program and maps the plan into an
implementation. To date, the Programmer's Apprentice provides a
seven-layer, system of knowledge representation and reasoning,
known as Cake [RICH92], a Requirement's Apprentice, and a
debugging assistant.

The Design Apprentice (DA), under development by Tan, will
add another component to the larger, Programmer's Apprentice.

The DA, starting from a high-level design described by a human
designer and from a library of commonly-used fragments of
specifications, designs, and algorithms, supports programming by
successive elaboration. During the elaboration process, the DA
can detect simple errors of inconsistency and incompleteness in

a program description. The underlying environment includes both
domain-specific and domain-independent knowledge. Everything
the DA knows is represented using Cake's frames and the Plan
Calculus.

At the front-end of the DA, a translator will convert design
descriptions (input by human designers in a LISP-like form) into
a plan described with the Plan Calculus. At the back-end of the
DA, a coder will convert plans, representing detailed program
designs, into source code (Common LISP). The heart of the DA is
a designer that will interact with a human and reason, using the
services of Cake, about the transformations required to convert
a high-level design into a detailed design. The DA will also
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support the notion of browsing the cliché library and of
retrieving clichés based on features from specifications.

The DA research attempts to answer the following question:
Can an automated system succeed in selecting the correct design
path out of the myriad of incorrect paths? Four approaches are
envisioned, two to avoid and two to solve parts of this search
problem. First, the DA operates at an abstract level to avoid
dealing with unnecessary details. Second, the DA uses copious
knowledge to assist in making intelligent decisions. Third, use
of existing algorithms from a cliché library avoids the need to
discover new algorithms. Fourth, getting help from the user
forces the DA to do all reasoning in a manner that can be
explained to the user.

Aut omat i ¢ Programm ng

Unlike automated, design assistants, which help a human
analyst complete a single, if essential, transformation in the
software development process, automatic-programming systems
attempt to perform, without human intervention, every
transformation required to generate a working implementation
from an initial specification of user requirements. Automatic
programming, as applied to domain-specific applications, was
first defined in the literature by Barstow.

An autonatic progranmi ng systemallows a conputationally naive
user to describe problens using natural terns and concepts of a
domain with informality, inprecision, and onmi ssion of details.
An automatic progranm ng system produces progranms that run on
real data to effect useful conputations and that are reliable and
efficient enough for routine use. [BARS85, p. 1321]
To meet Barstow's definition, automatic programming systems

must possess a range of knowledge, including: 1) application

domain knowledge, 2) programming knowledge, 3) mathematical

knowledge, and 4) knowledge of target architectures and

languages. Representing such wide-ranging knowledge might well
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require automatic programmng systenms to support nultiple
net hods of know edge representation, such as rules [MTH94, ODEL93,
HAYES5], frames [FIKES5], semantic networks [HSIE93, LIw2], and
object-oriented nodels [RASW3, RETT93, MEYESS]. From Barstow s
per spective, however, domain-specific know edge provides the key
to automati c progranm ng.

It might ... be argued that providing domain-specific know edge
could be part of an interactive specification process. That is,
the automatic progranmm ng systemwould initially be ignorant of
the donmain and the user woul d provide the necessary donmin

know edge during the process of specifying a program after
several prograns have been specified, the systenis know edge of
the donmai n woul d have grown substantially. This seenms to be nuch
closer to the mark: it solves the reusability problem and hel ps
cope with the diversity of domain knowl edge. [ BARS85, p. 1321]

Sonme domai n-specific approaches are reviewed i mediately in the
foll owi ng paragraphs, beginning with the results achieved by
Barstow after nore than six years of effort.

Barstow describes a system FNI X, for automatically
programm ng software that controls devices for |ogging data from
oil wells. [BARS91] Devi ce-control software nmust |og data, nust
control the device, nust satisfy real-tinme constraints, and nust
support concurrency and distribution. Devi ce-control programs
are of noderate size.

FNI X uses a transformational par adi gm an abstract
specification is transforned repeatedly through successively

nore concrete stages until a conpilable, source program is
produced. The conponents of a typical transformation nodel
include a, so-called, "w de-spectrunt |anguage (that includes

constructs for describing abstract concepts from the application
domain, as well as constructs for specifying nore concrete,
i npl enmentation details); a set of sequential transformations;

and a nechanism for controlling search. FNI X, specifically,
enbodies 31 transfornmations; five of these cross levels of
abstraction, while the remainder occur within a given |evel.
FNI X avoi ds the issues associated with searching by relying on a
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user to decide which transfornmations to apply and when to apply
t hem The user gives this information to FNI X using a script
| anguage.

In the exanple problem described by Barstow 84 steps in a
transformati on sequence |lead to a seven-line program Gven a
| arger specification (say 500 lines), a source program of 2,000
lines m ght be expected after some 10,000 transformation steps,
involving 500 transform types (nost of which remain to be
witten, along with control scripts that could nunber severa
thousand lines). Barstow states that FNI X has yet to achieve his
definition of automatic programm ng.

Anot her domai n-specific, automatic programmng system ELF,
descri bed in t he literature by Setliff, synt hesi zes
conput er - ai ded design (CAD) tools that automatically route wres
in very large-scale, integrated (VLSI) circuits. [SETL92] ELF
must: understand various physical technologies, select an
appropriate, procedural deconposition, choose algorithns and
data  structures, manage i nt er dependenci es, and generate
efficient code. ELF includes domai n-specific know edge that is
represented in a variety of forms, matched to the specific
probl emto which the know edge appli es.

Setliff believes that dommin-specific know edge is necessary
to succeed in synthesizing software. She also states that
abstraction nust be applied to separate the design space into
smal | er probl ens (each f ocussi ng on desi gn of some
tightly-coupled objects within the bigger problen). Know edge,
appropriate for a given |evel of abstraction, nust be used to
prune the design space.

ELF, as inplenented using OPS5, conprises about 1,300 rules
that transform a user-provided specification into source code
using three phases. First, the design is deconposed into
nodul es. Then, for each nodule, data structures and al gorithms
are sel ected. (A detailed description of the approach to
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selecting data structures and algorithnms is available in another
paper. [SETL91]) Finally, source code is generated.

Anot her automatic system for synthesizing software is
SI NAPSE. [KANT91] SINAPSE ains: 1) to reduce the tinme needed for
scientists and engineers to inplenent mathematical nodels, 2) to
al low natural |anguage specification of requirements for such
nodels, 3) to reuse existing inplenentations, and 4) to avoid
the introduction of careless errors into the inplenentations.
To achieve these ains, SINAPSE supports a five step process.
First, a domain nodel is devel oped. Second, wuser requirenents
are transformed to the necessary mathematics that underlie the
particul ar, physical phenonenon being nodel ed. Then, from the
math nodels, specific, high-level algorithnms are selected,
followed by detailed algorithns. Finally, code is generated.
During this process, design histories are nmaintained in a sinple
tree that allows the user to review the course of decisions and
to change the course at any point. After any changes are
specified by the user, the process noves ahead again from that
point (i.e., no dependency graphs are used to automatically
al ter design decisions based on user-directed changes).

Even though SINAPSE is |limted to building nathematical
prograns for scientific applications, a nunber of interesting
i ssues, having applicability to all automatic programmi ng
systens, were identified by the devel opers. First, a large
investnment is required: 1) to nodel (i.e., abstract, analyze,
and codify) a particular domamin, 2) to generate sufficient
programm ng know edge, and 3) to mamintain the synthesis system
(including the cost of noving the code to multiple platforns,
and the need to generate code for nultiple architectures,
particul arly for par al | el conmput ers). The know edge
encapsul ated throughout SINAPSE is w dely dispersed and, thus,
finding the correct changes required to nodify the system can be
chal | engi ng. Second, if the synthesis system does not produce
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correct results, then the end wusers, despite their best
intentions, will examne the target code for the cause of the
errors. This approach to debugging the synthesized software,
rem ni scent of programmers who would nodify the object code
output by a conpiler to conpensate for errors wthin the
conpiler, can be costly, unproductive, and risky. Third, the
synthesi s process produces a huge, data repository that can be
difficult to manage.

Anot her automatic, programmng system reported in the
literature by Smth, is the Kestrel Interactive Devel opnent
System (KIDS). [SMT91] KIDS uses a transformation approach,
augnented with domain know edge, to convert a fornmal, problem
specification into a working program The technol ogy underlying
KIDS is REFINE, a comercial, know edge-based, programm ng
environment and |anguage that supports first-order |ogic,
set-theoretic, data types and operations, transformation, and
pattern matching. The REFINE conpiler generates Comon LISP
code.

To apply KIDS, an analyst nust nove through a nulti-step
process. First, a domain theory (i.e., a nodel) is created and
witten in the REFINE |anguage. The domain theory will enable
the system to reason about particular specifications in the
domai n. Once the domain theory exists, a specification for a
particular problem in the domain is devel oped. The wuser then
selects a design tactic; currently, four are supported: 1) nap
to a library routine, 2) divide-and-conquer, 3) global search,
and 4) local search. Next, the user selects (from a nenu)
optimzations to apply to particular expressions wthin the
speci ficati on. KIDS then searches for appropriate, high-Ievel,
data structures (sets and sequences are supported) and converts
them into machine-oriented, data types before source code is
gener at ed. The generated code is conpiled into a working
program
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The exanple use of KIDS described in Smth' s paper attacks a
specific problem (the Costas array problem in the field of
sonar and radar, signal processing. Devel oping the domain
theory and the specification take an enornous anmount of effort
(as with nost first-order logic and set-theoretic specification
t echni ques). This effort mght prove a najor inpedinent for
probl ens of any real size.

End- User Programm ng

Distinct from automatic progranm ng, end-user programi ng
enables a conputer-naive user to interact with an intelligent
agent to select, exercise, evaluate, and nodify an application
program No formal specification of requirenents is needed; in
fact, the user need only bring the ideas in his head to a
conputer termnal to begin the process. Researchers at the
Digital Equiprment Corporation (DEC) have developed such a
system cal |l ed Easyprogranm ng. [MARQ?2]

In outline, the DEC system maps the features of a specific
application to appropriate abstract nmethods (i.e., control
structures stored in a know edge base), elicits expertise
(including variations and exceptions), translates the expertise
into a form that the selected abstract control structure can
use, and then nodifies and extends the application to cover
changes in the application requirenents. To acconplish these
tasks, the DEC system conprises three tools: Spark, Burn, and
Firefighter. For a better understanding of the system each of
these tools is discussed in turn.

Spark, with help from a user, sifts through a hierarchy of
pre-defined control structures to select an appropriate approach
for the specific application at hand, and then, by consulting
wWith the user, custom zes the selected approach. Each conponent
in the hierarchy is characterized by a set of assunptions about
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the type of inputs needed and the kind of outputs produced.
Where multiple control structures appear to be appropriate,
Spark queries the wuser to reach sone conclusion on which
structure would be best. I f Spark cannot easily explain the
source of anbiguity to the user, then Spark sinply makes sone
default assunptions and |eaves the problem for Firefighter.
After conpleting its work, Spark calls Burn to further custom ze
t he sel ected sol ution.

Burn relies on a library of know edge acquisition tools, one
Is associated with each pre-defined, control structure. Each
know edge acquisition tool knows what know edge is required for
its associated control nechanism knows how to elicit the needed
know edge, and knows how to represent that know edge in a form
needed by the control nechanism For exanple, Burn mght ask
the user for sonme solutions to an exanple problem and for a
means of distinguishing between the solutions. After Burn
acquires the necessary know edge and configures pull-down nenus
for the application, Firefighter is dispatched.

No program generated by Burn will work well until it has been
used for a while, and is then nodified to account for forgotten
or unanticipated factors. Burn prograns are executed under the
control of Firefighter. Firefighter is an evaluator that

nonitors the perfornmance of Burn prograns, detects poor results,
and then queries the user to diagnose and debug the application.
If a detected error results from m ssing or incorrect know edge,
then the know edge acquisition tool is invoked. If the control
mechani sm is inappropriate, then Spark is invoked to select a
new mechani sm

Firefighter enploys three rather sophisticated, conplenmentary
evaluation techniques to nonitor the performance of Burn
progr ans. The first two evaluation techniques rely on specific
code that is included in the control nechanisns, while the third
technique is built into Firefighter. The first evaluation
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technique mght be called: GOOD DOG BAD DOG Each tinme the
application executes, the wuser is queried about whether the

performance was adequat e. If a BAD DOG response is received
then the know edge acquisition tool is invoked. The second
eval uation technique mght be called: 1'VE BEEN A BAD DOG  The
application nonitors its own per f or mance to det ect

i nconsi stenci es and i nadequate results. When such problens are
detected, the wuser is informed and the know edge acquisition
tool is invoked. This strategy is necessary because nobst users
will not sit still during the initial developnent while Burn
elicits know edge about every type of case that the program
m ght face. Instead, Burn asks for a mninmmof information to
start, the application then nonitors its own perfornmance, and
the user is required to provide additional know edge as needed
to resolve problens and inprove the performance of the
appl i cation. The third evaluation strategy mght be called: |
THINK YOU M GHT NEED A HORSE. Since Spark initially selects a
control mechani sm by maeki ng strong assunptions on weak evidence,
Firefighter nmust conpare the application output to the
assunptions in order to detect incorrect control nechanisns.
When an error is suspected, Spark is invoked to suggest an
alternate control nechani sm

The goal of the DEC system is to supply reusable nechanisns
in a wusable fashion. Marques and his colleagues plan an
el aborate set of steps to evaluate progress toward their goal
To assess usability they built nine applications thenselves, and
then presented themto users. (At the time of the report, these
applications were being evaluated by the users.) If the
applications appear useful, they plan to wite detailed
instructions for specific application tasks and then to ask

users with various levels of programmng skill to build sone
prograns to solve the tasks. Then, they wll ask donain
experts, who perform a task well, but mnually, to create a
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full-scale program using the tools. (At the tine of the report,
one program had been built by a user; the job took eighteen
days.) As a final test, they will ask an experienced programer
to develop a full-scale, hand-coded program to solve a selected
appl i cation. They will then conpare the devel opnent tinme and
utility of the hand-coded program with that of a user-devel oped
program

To denonstrate reusability, Marques and his coll eagues need
to show that new control nechanisns are not needed for each new
application. (This is critical because they admt that the cost
of bui | di ng mechani sns and their associ at ed know edge
acquisition tools is too large if they need a special tool for
each new application.) Each of the nine progranms that they
devel oped wused between two and six nechanisns; thirteen
nmechani sms were used altogether. Seven applications used the
di al og nanager, six used the select nechanism and five used the
cl assify mechani sm

Marques and his colleagues report that "[o]lne of [their]
bi ggest problens is getting people to ’'make contact’ wth
Spark’s activity nodel. People buried in the details of ’'real
wor k’ have difficulty understanding generic, abstract nodels of
their tasks unless they helped to create the nodels." [MAR2, bp.
29] In fact, the exanple given in their report, an exanple of
sifting through the hierarchy of problenisolution nodels, shows
a bewildering array of possibilities. More discouraging is
that, upon selecting an incorrect mechanism the user can be |ed
through a tedious, repetitious cycle of programm ng by exanple
only to be sent back to the beginning to select a nore
appropriate mechani sm The basic approach appears to be
programm ng by educated guess, followed by trial and error
refinenment.

Marques and his colleagues have developed the nost
sophi sti cat ed, conput er-assisted software developnent tools
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reported in the literature to date. The tools conpose and
refine an application from a set of reusable conponents. The
conposition nethod enploys know edge encoded within the tools,
coupled with know edge elicited from a domain expert. The
reusable conmponents and the elicitation, gener ati on, and
run-tinme tools define an architecture into which elicited
knowl edge can be encoded. Instead of relying on standards to
define an open architecture, the developers have constructed a
cl osed environnment.

The system produced by Marques and his coll eagues neet the
criteria for an automatic programmng system as defined by
Barstow in 1985, wth one exception. The reliability of
prograns produced by the DEC system cannot be assessed because a
given application program is never really conpleted. The
program continues to be refined, growing smarter, and presunmably
nore reliable, with use.

Reuse Through Domain Anal ysis And Mbdel i ng

In the absence of practi cal automatic or end- user
progranm ng, nunerous software engineering researchers advocate
speci fying, designing, and inplenmenting systens in a manner that
enables the results of such labors to be reused in the future;
and then, once the future arrives, automated nechanisns shoul d
enabl e these previous investnents to be reused, inproving both
the productivity of software developers and the quality of

software products. Bel ow, several proposed approaches to
software reuse are reviewed. Each of these approaches envisions
domain analysis and nodeling as the initial, required
i nvest ment . The approaches differ, however, in the neans

proposed for noving from a domain nodel to a working software
system
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One of the first approaches to software reuse through domain
nodel i ng was Draco, proposed by Neighbors. [NEIG89, NEIG84] Draco
enabl es anal yses and designs to be reused, as well as actual
sof tware conponents. Domai n anal yses result in the definition
of a dommin | anguage. The domai n | anguage, along with specified
mappi ngs onto | anguages for other, |ower-level domains, forns a
nodel of the donain. Usi ng the appropriate donain | anguage, an
anal yst can describe the requirenents for specific systens
Wi thin a donmain. The requirenents specification is then input
to a domain |anguage parser (one nust exist for each domain
| anguage) which converts the specification to an internal form
that is, a parse-tree. To create an inplenentation, a series of
transformations is needed; each specification in a given domain
| anguage is converted to a specification in the |anguage of a
| ower -1 evel domain, wuntil, for each conponent specified, an
execution nodel is created. In effect, the |owest-I|evel
transformation for any given concept involves a napping from a
domai n | anguage construct to an execution nodel construct. Once
all concepts from a system specification have been mapped to
constructs in the execution nodel, software conponents,
representing each execution nodel construct, can be extracted
from a reusable conponents library and Ilinked to form an
i mpl ement ati on.

Draco can be viewed as an underlying execution nodel, coupled
with some initial mappings from|lowlevel donain concepts to the
execution nodel. Each domain added to the nobdel requires an
analyst to define a new, domain-specific |anguage and mappi ngs
between that |anguage and existing domain |anguages, or the
execution nodel. This leads to bottomup construction of a
richer set of domain nodels that can conplicate evolution and
mai nt enance. A domain analyst nust know how to describe
mappi ngs between each existing, domain-specific |anguage and new
| anguages that are created over tine. Since these conplex
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mappi ngs nmust be nanually created each time a new donain
| anguage is defined, a Draco system m ght becone unw el dy. In
the end, Draco dommin analysts becone designers of translators
between newly-created |anguages and a growing array of
nonst andard, | ower-1evel | anguages.

A different approach to domain-oriented software reuse is
proposed by Ornburn and LeBlanc. [ORNB93] They propose, in one of
f our forms of conmponent conposition, to instanti ate
I npl ementations from preexisting, generic architectures (wthin
a specific domain) augnented with information extracted from

conmponent descriptions. In a second form of conposition, they
propose to generate the generic architecture first wusing a
gener at or. In a third form they propose to build conponents
from higher |evel descriptions. In a fourth form text from a
conmponent gener at or woul d be processed to produce an
i mpl ement ati on. They describe several experinments with their
approach using the domain of pr ot ocol handl ers for a
t el econmuni cati ons system In one experinent, they built a

generic architecture for handling nultiple instances of a
protocol handler and instantiated that architecture wth a
conponent description for a specific protocol. In a second
experinment, they created a description of a protocol handler
suited for use with a conponent generator. In general, they
envi sion that conponents are described in two forns: 1) a path
expression and 2) a code tenplate that inplenents a path
expressi on.

As described, the Onburn and LeBlanc approach suffers from
famliar inhibitors to software reuse. How wi |l the popul ation
of generic architectures and conponents be created? How wi | |
programmers |ocate, conprehend, and nodify the conponents and
architectures? How can nanagenent be convinced to nmke the
i nvestment required to build generic architectures and conponent
generators?
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A nore pragnmatic approach to software reuse within a domain
is proposed by Arango, Shoen, and Pettengill. [ARANG3] "The high
cost of recovering critical know edge notivates our formalizing
It for reuse.” [ARAN93, p. 234] They believe that inprovenents in
software quality and productivity occur when designers operate
in a domain-specific workspace that consolidates infornation
from domain analyses into an automated, information-retrieval
system

A domain-specific workspace consists of tw types of
dat abases. Technol ogy books consolidate the best organi zationa
know edge avail able about a class of problens. Product books
consol i date know edge about individual instances of solutions to
specific problens. For a system conposed of 32K Ilines of
assenbly code, experience shows that between ten and twenty
t echnol ogy books may be required. To date, Arango, et al, have
realized benefits from using their approach on projects in a
manual form (They recognize that as the anmount of information
grows, automated support will prove essential.)

Technol ogy books provide the key to capture, for reuse, the
results of domain analyses using a well-defined process. First,
a domain analyst defines a |anguage for specifying problens
within a domain. Then, formal nodels are created for solutions
to specific problens in the domain. Third, technol ogy books are
created to denonstrate that nodels of known solutions explain

systens within the donain. Fourth, good designs, that map
sol utions to specific i mpl ement ati on t echnol ogi es, are
encapsulated within the technology book for the donain. For

each design, the technol ogy book must explicitly specify issues,
assunptions, constraints, and dependenci es. Finally, 1inks
bet ween reusable, software nodules and designs are encoded in
t he domai n, technol ogy book.

The pragmati sm behi nd technol ogy books stens fromthe | ack of
assunptions about any particular execution nodel, architecture,
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programm ng | anguage, or elaborate transfornations. Technol ogy
books sinply identify artifacts and the relationships between
them and then represent them in an accessible form Ar ango

Shoen, and Pettengill describe plans for an automated system
called RADIO, to automate technol ogy books. RADIO wi I | consi st
of an object-oriented database (ObjectStore), a nodeling

| anguage (DOLL) for representing structures that can be indexed,
and a informal portion (using FraneMaker to store texts,
pictures, tables, and equations). The information contained
with a technology book is human-readible and is neant to be
accessed, understood, and used by a human analyst. In this way,
technol ogy books aim to address sone of the hard problens
surroundi ng reuse: classification, |ocation, conprehension, and
adapt ati on of conponents. Usi ng technol ogy books, any software
created within an organization can be archived in a form that
enhances the possibility for reuse.

A nore anbitious approach to the Reuse O Software Elenents
(RCSE) is described by Lubars. [LUBA91] Specifically, Lubars
di scusses ROSE-2, a descendant of earlier work (IDeA and ROSE-1)
at the Mcroelectronics and Conputer Technology Corporation
(MCO). The general aim of these MXC efforts is to reuse
software requirenments and designs, adapting them to solve new
probl ens. MCC researchers believe that architectures tend to
stay stable in famlies of systens; such stability should allow
past requirenents analyses and specifications to be reused,
along with key, design decisions and supporting code. To
achieve these ains, designs nust be sufficiently abstract to
cover a famly of related problens, and information nust exist
showi ng how to custom ze designs for specific instances.

The initial MCC effort in this area was the Intelligent
Design Ad (I1DeA). | DeA inplenented a faceted classification
schenme (as proposed by Prieto-Diaz and Freeman) for organi zing
and searching the reuse database. | DeA could generate
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execut abl e prototypes of designs, specified as DFDs, from a
library of processes and a nodul e interconnection |anguage. A
later MCC effort, ROSE-1, conbined concepts from IDeA with the
software tenplate system (STS) and a data-type reuse system
| DeA served as a front-end and STS served as a back-end, al ong
with a library from which DFD processes could be mapped to
abstract data types and inplenentations. ROSE-1 coul d generate
prototype code in C, Pascal, or Ada. These conpiled prototypes
proved nore efficient than the |DeA prototypes (which used a
system cal l ed POLYLI TH).

ROSE-2 builds upon a know edge-based refinenment paradigm
where user-supplied requirenents guide the selection and

custom zation of a high-Ievel design. As reported by Lubars,
ROSE-2 will automate his refinenent paradi gm The system w ||
be supported by a library of high-level design schemas and a set
of refinenent rules. A truth maintenance systemw || be used to
record all dependencies between requirenents and design
consequences. Thi s Wil | enabl e RCOSE- 2 to use

dependency-di rected backtracking to explore alternative designs;
IDeA and ROSE-1 required the wuser to change the initial
requi renents specification and reapply the refinenent rules to

generate alternative desi gns. The | ow | evel desi gn
representation for ROSE-2 will be Petri Nets, from which several
views can be generated (e.g., hierarchical structure, DFDs,
cont rol flow, and state-oriented behavior). From the

literature, it appears as if a top-level design in ROSE-2 m ght
be a requirenents specification.

ROSE-2 will inplenent a three phase process. First, a design
schema will be selected that matches the user requirenents.
Second, an instance of the selected schema will be instantiated
from the wuser requirenents. Third, refinements and design
decisions will be applied based on user input. The current
state of ROSE-2 cannot achieve the intended process for several
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reasons.
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A different approach to software reuse based on donain
analysis and nodeling is the Evolutionary Domain Lifecycle
(EDLC) nodel proposed by researchers at George Mason University
(GW). [GOwA93, GOVA92, GOVA91] The EDLC includes a life-cycle
process (see Figure 111-1), a domain nodeling |anguage, and
tools for translating user requirements into an inplenentation
(only a subset of these tools exist at present).

The first step in the EDLC process is analysis of a domain
and specification of a domain nodel. The domain nodeling
| anguage for EDLC is object-oriented, supporting several views
of the donain. One view, called the aggregation hierarchy,
enabl es an anal yst to express a conposition hierarchy (using the
part-of relationship) to depict the deconposition of conplex,
aggregate objects (subsystens) into |ess conplex objects,
resulting at the leaves of the hierarchy in sinple objects
within a given donain. A second view, called the
general i zation/ speci alization hierarchy, allows a domain analyst
to describe classes of objects in a domain (using the is-a
rel ati onship). This class hierarchy can express simlarities
and differences between objects. To nodel a specific
requi renent, an analyst can select the nobst appropriate objects
from the class hierarchy or can specialize the nost appropriate
exi sting objects (updating the domain nodel at the sane tine).
A third view, called object comunication diagranms, enables an
analyst to express the nmessage passing relationships between
objects within a donmain. The object conmmunication diagrans are
structured hierarchically in concert wth the aggregation
hi erarchy, so a picture of inter-object nessage exchange can be
generated at any |evel of abstraction (even m xing such |evels,
if desired). The fourth view provided by the EDLC domain
nodel i ng | anguage uses state transition diagrans. Any obj ect
within the domain that requires state-based behavior can be
described using a state transition diagram The fifth view of
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EDLC ties user-oriented features in the domain nodel to domain
obj ect s. This feature-object dependency view indicates which
objects are required for all systens in the donain, which
objects are optional, which objects nust be included together,
and which objects are nutually exclusive. EDLC domai n nodel s
can be described using a CASE tool known as Software Through
Pictures (STPs); however, the semantic interpretation of the
resulting data structures is fornmed using a separate object
repository (generated with a tool witten at GW).

Once a domain nodel exists in the object repository,
target-system specifications can be generated for a user. The
user describes the features needed for the system to a
know edge- based, requirenments-elicitation tool (KBRET). [SUGU93]
KBRET then uses the feature-object dependencies in the domain
nodel to extract and generate a specification that neets user
needs. KBRET enforces the nmandatory, inclusive, and nutually
exclusive relationships, as expressed in the domain nodel. STP
can be used to generate graphic output of the nmultiple-view
specification extracted by KBRET.

The remai ning phases of the EDLC have yet to be inplenented.
The EDLC vision can be seen in Figure 111-1. Gven a
target-system specification (from KBRET), a tool should enable
execution of a prototype to support functional analysis of the
system a simulation nodel could also be used to evaluate the
performance of the system The target-system specification
m ght then be fed into a design generator to form a high-1Ievel
architecture; presumably, EDLC envisions that design generation
woul d be acconplished by selecting and instantiating a specific
design from anong a set of preexisting designs for the donain.
Finally, a target-system inplenmentation would be generated by
instantiating the design froma library of reusabl e conponents.

The EDLC nodel provides a useful structure for devel oping
famlies of systens from a domain nodel. The domai n nodel i ng

58



| anguage t akes advant age of power f ul concepts from
object-oriented analysis and state-based, behavior analysis.
The existence of KBRET, coupled to STP, facilitates generation
of target-system specifications with little effort on the user’s
part. As with any approach that requires a domain nodel,
significant effort will be required to analyze and specify each
new donai n. If designs are to be instantiated from a set of
generic designs for each donmain, then additional expense wll be
required to popul ate a database of domain designs and to find a
means of matching target-system specifications to existing
designs. Creating the library of reusable conponents could al so
prove expensive.

V. Automating The Reuse O Design Know edge

The inprovenents in software productivity and quality
prom sed by domain analysis and nodeling techniques have not
been fully realized, especially in the domain of real-tine
appl i cations. G ven an appropriately analyzed domain with a
fully-specified, domain nodel, automated nechanisns exist for
generating specifications for particular systens from the domain
nodel (which enconpasses a famly of systens). [SUGU3]
Unfortunately, the next step in the devel opment process, mapping
a target specification to a high-level design, requires, at the

present tine, the intervention of skilled designers. Thi s
requi renent introduces a nunber of inpedinents into the
devel opnent  process. First, skilled designers, especially

designers of <concurrent and real-tine software, are a rare

comodity. [BRO87] This shortage causes a bottleneck in any
devel opnment process and creates a shortfall of high-Ievel
designs applicable for reuse within a donain. The shortage of

skilled designers also neans that few, if any, alternative
desi gns can be considered. [BERES84] Second, designers tend to be
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overused. Such overuse causes even skilled designers to make
m st akes.

Experience with large software systems shows that over half of
the defects found after product release are traceable to errors
in early product design. Furthernore, nore than half the
software |life-cycle costs involve detecting and correcting design
flaws. |[BERE84, p. 4]

Third, designers tend to use concepts, nethods, and notations
that are famliar to them thus, the ability to catalog, find,
and reuse designs can be inhibited by superficial differences
anong designs created by various designers. [BERES4] Fourth, even
skilled designers need tools to analyze designs for functiona

correctness and performance characteristics. Such tools are
general ly unavail able, but where they do exist they usually make
assunptions about the design nethod used, or the underlying
means of representing the design.

Dependence on skilled designers, | acki ng appropriate,
automated tools, results in a design barrier that inpedes
effective use of donain analysis and nodeling approaches for the
generation and reuse of concurrent, software designs. Referring

to the Evolutionary Donmain Life Cycle (EDLC) nodel illustrated
in Figure 111-1, the design barrier arises once a target-system
speci fication has been generated. In the EDLC nodel, a design
gener at or i's envi si oned t hat creates a target-system
architecture, presumably reusing some preexisting, domai n
architecture. This represents one approach to overcom ng the
design barrier. Unfortunately, the assuned existence of a

reusabl e, domain architecture presents a difficulty. As pointed
out be Lubars, when discussing | DeA, ROSE-1 and ROSE-2, creating
a popul ation of reusable, design schemas is expensive. [LUBA91]
Lubars goes on to state that even if such a popul ati on exists,
there are no agreed nmethods for selecting between alternative,
simlar, design schemas for a given requirenents specification.
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A second approach to overcomng the design barrier mght
i nvol ve addressing issues of concurrency and resource-sharing
during the domain analysis and specification phase (see the
first rectangle in Figure 111-1). For exanple, a concurrent
nodel ing nmethod, such as Entity-Life Mdeling (ELM or bject
Life Cycles (OLC), mght be applied. This type of approach
enbodies two nmain drawbacks. First, domain analysis and
nodel i ng shoul d concentrate on understandi ng the problem domain,
not the solution domain. While identifying concurrent objects
m ght be viewed legitimately as being within the purview of
probl em anal ysis, deciding how such objects should be packaged
into tasks and nodules is clearly outside the scope of problem
analysis. This neans that, even if ELM OLC, or a |ike approach
were adapted as a domain analysis and nodeling nethod,
additional, high-level, design issues wuld remain to be
deci ded. Second, donmain analysis and nodeling should proceed
i ndependent of assunptions about the capabilities of particular
target systenms on which solutions can be inplenented. ELM
assunes that solutions will be inplenmented in a multi-thread
envi ronment where tasks share address space (and thus can share
access to software nodules). OLC assunes that concurrent
objects wll be represented as finite-state nmachines that
communi cate with each other via asynchronous, message passing.
These, and other such, assunptions are generally inappropriate
for anal yzi ng and nodel i ng probl em donai ns.

A third approach to overcomng the design barrier involves
mappi ng the domain analysis directly to a concurrent solution,

where each object in the problem specification becones a
concurrent (or active) obj ect in t he desi gn (and
i mpl enent ati on). For exanple, the Actor nodel proposed by

Hewitt and defined by Agha [AGHA90, AGHA89, AGHA87, AGHA87a, AGHAS6]
could be assuned, and a parallel-programm ng environnent, such
as Regis, [ MAGE93] could provide a target envi ronnent .
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Unfortunately, an approach such as this can result in excessive
concurrency. Generally, as the nunber of tasks in a solution
i ncreases, the anmount of overhead associated with task sw tching
al so I ncreases. For many t ar get envi ronnent s, such
task-switching overhead can becone prohibitive. For ot her
environnments, such as massively parallel architectures, a
mul ti tude of tasks m ght prove ideal. These are decisions to be
made by a designer based on performance requirenents and on the
capabilities of the target hardware and operating software.
Automatically mapping every object in a specification to a
concurrent task takes these decisions away from the designer and
can lead to designs that are inappropriate in many situations.

A fourth approach to overcone the design barrier proposes
assisting a designer to generate designs from a requirenments
speci ficati on. Several instances of this approach, limted to
designs for sequential programs, were reviewed previously (in
Section 111). This type of sem -automated approach to design
generation forns the basis for a proposal, set forth below, to
overcone the design barrier inherent in domain analysis and
nodel i ng processes. The proposed approach is unique in severa
facets. First, the proposed approach distills heuristics from
several real-time, design nmethods into a set of expert rules
This approach has previously only been tried with transform
analysis from structured analysis and design. Second, the
proposed approach couples the design assistant rules to a donain
nodel ing technique. The result is a generator that can help to
produce specific designs from domai n nodel s. Most ot her domain
nodel i ng approaches either: 1) attenpt to match donain nodel
outputs to preexisting designs or 2) to transform domai n nodel s
to software conponents. Third, the proposed approach can be
used wth any domain nodeling technique, or wth any
obj ect-oriented anal ysis nethod, that can represent the analysis
as a network of objects (possibly connected to external devices)
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that conmunicate by passing nessages. As a result of this
trait, the proposed approach can be applied to assist in
generating concurrent designs from any object-oriented analysis
nmet hod. Fourth, the proposed approach can help to identify
essential information that the analysis failed to supply, can
elicit the mssing information, and then can facilitate the
retention of that information for future use. Most ot her
approaches based on domain analysis and nodeling require that
the analyst acquire all information needed for subsequent
transformati ons before such transformations are considered.
Fifth, the proposed approach produces a representation of a
concurrent design that is independent of any specific purpose.
Wth appropriate tools, the resulting design can be represented
graphically or printed, can be analyzed for performance
characteristics, can be sinulated to assess the function and
performance of the design, or can be translated, either
automatically or by hand, into an inplenentation. Most ot her
approaches result in specific representations intended for
speci fic purposes.

A Proposal For Reusing Design Know edge To Cenerate Designs

The use of know edge-based systens to inprove human abilities
to generate and evaluate designs for a range of applications
(including, for exanple, architecture, system configuration, and
bui l ding construction) is the subject of nmuch research and great
prom se. [ COYN90] Bel ow, a know edge-based strategy is proposed
to overcone the design barrier that exists in domain analysis
and nodeling approaches to software reuse. Mre specifically,
gi ven:

1. 1) the EDLC model, as shown in Figurelll-1,

2. 2) the domain-modeling language embedded in EDLC, and
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3. 3) KBRET (atool for generating target systems from a domain model),

an expert system is envisioned to assist in the creation of
concurrent designs for famlies of systens. An architecture for
such an expert systemis illustrated in Figure |IV-1.

Requi renent s speci fications, in the form of obj ect
comuni cations diagrans (OCDs) that give one view of a
target-system specification output from an EDLC domain nodel
using KBRET®, form the basis for beginning a design. The OCDs
must, however, be extended with additional information to forma
nore conplete requirenents specification nodel. Any addi ti onal
information that is not provided by the input OCDs nust be
obtained from an anal yst or designer. The requirenents elicitor
fulfills this function using requirenments elicitation know edge.

Once a requirenments specification exists, the designer
selects a target environnent for which a design is to be
gener at ed. A target environment s characterized by a
description that indicates essential traits that mght affect
vari ous design decisions. Shoul d the necessary description not
exist, a target-environnent elicitor obtains the traits of a
new, target environnment.

G ven a requirenents specification and a target-environment
description, the design generator can be invoked to fornulate a
structuring of tasks and nodules that constitute a high-Ievel
desi gn. The design generator nust understand the nodels for
requi renents specifications, target environnent descriptions,
and designs. Know edge enbedded within the design generator
controls a reasoning process that nakes the necessary design
deci si ons. The output of the design generator is a design,

3 Theinitial OCDs could be generated from other object-oriented analysis methods. For
example, the OOA method of Coad and Y ourdon identifies message connections between
objects, the Object Life Cycles approach of Shlaer and Mellor includes an object communication
model; the OMT method of Rumbaugh does not provide a specific model for message
communication between objects, but such amodel can be derived easily from the object and
functional models of OMT.
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encoded in a form independent from any particular use, but a
formthat enables a range of possible uses.

The proposed approach, that s, assisting designers of
concurrent software with an expert system ains to achieve three
general and four specific goals. Generally, the expert system
should inprove the productivity of inexperienced designers of
concurrent software, should inprove the quality and consistency
of concurrent, software designs, and should overcone or avoid
some software reuse problens concerning designs. Speci fically,
the proposed approach reuses design knowl edge to assist in the
critical transformation from a requirenments specification to a
concurrent design. The proposed approach elicits automatically
any mssing information needed to make design decisions. The
proposed approach supports object-oriented, domain analysis and
nodeling nethods that provide, or can be napped to, object
comuni cation  di agrans. The proposed approach ensures
traceability from a requirenents specification to a concurrent
desi gn.

Realizing the proposed approach requires solving sone

specific research problens. First, applicable design-decision
heuristics must be identified. For concurrent designs, severa

sources exist for such heuristics. The various design nethods
proposed by Gonma include a rich set of heuristics for task and
nodul e structuring. [GOVA93a) Ni el sen and Shumate have also
proposed sonme heuristics. [NEL88, N EL87] The Entity-Life

Model i ng approach devel oped by Sanden also contains insights
regardi ng concurrency. [SAND94, SAND89, SAND89a] While none of these
nmet hods directly address the problem of mappi ng  obj ect
comuni cation diagrams to tasks and nodules, many of the
suggested heuristics should prove adaptable to the problem at
hand.

The second research problem involves identifying and
speci fying the know edge necessary to support the applicable
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desi gn heuristics. One part of this problem requires that the
bare, object-conmunication-diagram view of the requirenments
specification be extended to include additional information on
whi ch design decisions can be based. The specific information
that keys the decision-making of designers nust be identified
and specified in a form that will enable elicitation of such
i nformati on. A second  part of this problem requires
identification of the traits of a target environnment that wll
affect design decisions. Here, a nodel nust be created to
describe target environnents. A third part of this problem
requires definition of the conponents of a design and the
rel ati onship between these conponents, leading to a nodel for
describing the generated, concurrent designs. Creating these
nodel s, for requi renents  specification, t ar get - envi r onnment
description, and design, wll require a careful analysis and
eval uati on of assunptions that underlie various design methods.

A third research problem requires the identification and
structuring of applicable know edge about the design process.
Once a set of design heuristics exists, the order in which
deci sions can be made nust be considered. This will likely
require that decisions be grouped into classes, according to the
specific issues that they address, and then that the classes of
decisions be applied in a particular order. Here, the avail able
design nethods for concurrent software should provide a starting
poi nt for considering these guestions.

A fourth research problem requires the ~creation of
elicitation strategies to obtain mssing information from a
desi gner. Strategies are required to elicit requirenments
information and target-environnment traits. Elicitation of
requi renents information nmust be carefully considered because a
user can only be asked about details that he can be reasonably
expected to know. This restriction mght require the
requirenents elicitor to reason about the basic facts provided
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by a wuser in order to draw conplex conclusions about
requirenents.

As each research problem is sol ved, a know edge-
representation mnethod nust be selected. [GONZ93, WEBSSS]
Representing this knowl edge then becones the fifth research

probl em The requirenents nodel, the design nodel, and the
target-environment description nodel can be represented by
either a semantic network [HSIE93], a frame-based notation
[FIKES5], or an object-oriented nodel. [KAI N94, BUSC93, MEYESS] The

design-decision heuristics seem to suggest a rule-based
representation. [GONZ93, G AR89 , HAYES5] The required, design-process
knowl edge appears procedural. Procedural know edge can be
represented by procedural, programmng |anguages, by m Xxing
phase constraints into production rule systens, by enploying a
rule-priority schenme, and by encapsulating rules into nodules
whose execution is controlled by a focus stack. Each of these
representations for procedural know edge should be considered.
Elicitation know edge nust also be represented. A conbi nation
of procedural know edge and inference networks appears to be
applicable to the issues faced. Procedural know edge can
control when specific questions are asked of the user, while
i nference networks can be used to reason about the information
provi ded by the user.

To verify that the required know edge is properly identified
and represented, a sixth research problem nust be addressed.
The identified heuristics, nodels, processes, and elicitation
strategies nmust be inplenented to ensure that they work

effectively and efficiently. |Inplenenting the envisioned system
will require an expert-system shell capable of representing
procedur al know edge, rul es, i nf erence net wor ks, and

object-oriented nodels (or semantic networks or  franes,
depending on the <choice for representing static nodels).
Several candidates exist, however, the tool envisioned for
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i npl enmenting the proposed, designer’s expert assistant is CLIPS
version 6.0. [G AR93, G AR89 CLIPS provides a portable
environnment (that runs under DGOS, Mcrosoft Wndows, Apple
System 7, UNI X, and Digital’s V\E) , I ncor por at es an
object-oriented nodel together wth a rule-based production
system provides for nodular application of rules, and is
I nexpensive to procure.

Solving the research problens described above will lead to
several specific benefits. First, by coupling a design
generator to a domain analysis and nodeling system sone serious
reuse problens can be solved or avoided. One such problem is
the lack of high-level designs for target specifications from a
domai n. A designer’s expert assistant facilitates the creation
of high-level designs fromtarget specifications; thus, the |ack
of a design for a target specification is directly addressed by
the proposed approach. The proposed approach allows one to
avoid addressing criteria for classifying designs, for matching
desi gns agai nst target specifications, and for understanding and
adapting preexisting designs to new target specifications. Even
wher e t he reuse nodel of classification, | ocati on,
conprehension, and nodification is preferred, an automated,
design assistant should enable the design repository to be
popul ated nore quickly than would be possible with strictly
manual approaches.

Second, generated designs, captured in automated form can be
subjected to various fornms of dynamc and static anal ysis. For
exanpl e, Sha and Goodenough show how nul titaski ng designs can be
anal yzed, using rate-nonotonic analysis, to determ ne whether
timng requirenents can be net under worst-case conditions.
[sHA90] Smith and WIIlianms describe a neans of generating queuing
nodels from multitasking designs to enable estinmation of
response tine under typical system |loads. [sSMT93] Pidd presents
guidelines for deriving data-driven, generic simulators for
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specific domains. [PlIDD92] Dillon shows how to verify safety
properties of multitasking prograns. [DiLL90]
A third benefit of the proposed approach is that the

generated design wll be conplete and consistent wth the input
requirenents specification. Every object and nessage in the
requi renents specification is guaranteed to be allocated to a
design elenent, or to be identified automatically as a
requi renent that could not be napped. This avoids a conmon
source of design errors that occur when the human designer
sinply overlooks sonme of the requirenents. In addition

traceability bet ween t he el enent s in t he requirenents

specification and el enents in the design are assured.

Aut omat i ng desi gn know edge can hel p inexperienced designers
to create better, nore consistent, designs, faster, and wth
fewer m stakes. Even when designers are experienced, the
i ncreased speed with which designs can be created enables nore
design alternatives to be considered then would be possible
wi t hout automated assi stance. Considering nore alternatives
m ght result in inproved flexibility, increased performance, and

| ownered cost for the final design. Produci ng designs nore
quickly also provides an additional benefit: formerly
undetected flaws in the domain nodel can be reveal ed. Thi s

foll ows because decisions made during donmain analysis and
nodeling result in object identification and structuring
decisions that lead to specific, high-level, design decisions.
The result of applying such design decisions to particular
obj ect comunication diagrans might lead to poor designs. In
such cases, the domain analyst, in consultation with a designer
can revisit the domain nodel to construct a nore appealing
structure.

The next section investigates the feasibility of the proposed
approach to generate, sem-autonmatically, concurrent designs.
In particular, a small exanple of a requirenments specification
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Figure V-1. Context D agram For A Cruise Control System

for a cruise-control system is analyzed against sonme design
heuristics that could be wused to transform the requirenents
specification into a nultitasking design. The heuristics are
i mpl emented as CLIPS rules and applied to a representation of
the requirenents specification to generate a design. The
results suggest that the proposed approach is feasible.

V. A Case Study

This section presents a small, case study to denonstrate that
the proposed approach to generating designs, as described in
Section 1V, appears feasible. The case study begins with a
requi renents specification for a cruise-control system (CCS).
The context diagram Figure V-1, for the CCS shows that the
software nmust nonitor inputs from four devices in order to
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Figure V-2. (bject Communication D agram For The Cruise
Control System

control the settings of a throttle actuator. The remai nder of
the requirenments specification for the CCS is given by an object
comuni cations diagram (OCD) that deconposes the system into a
set of objects that exchange nessages. The OCD of nost
interest, shown in Figure V-2, contains all the |leaf-I|evel
objects that conpose the CCS, and includes the devices in the
cont ext di agram
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For this case study, a requirenents nodel represents the OCD
with sone extensions. The extended, requirenments nodel is
name : SYMBOL name : SYMBOL
count : INTEGER (default 1) device : SYMBOL
direction: enum (Input | Output) status: enum (allocated
life: enum (Active | Passive) | unallocated)
stimulus : enum (time | demand) |
associated-object : SYMBOL
name : SYMBOL name : SYMBOL
device : SYMBOL device : SYMBOL
status: enum (allocated status: enum (allocated
| unallocated) | unallocated)
| |
OBJECT
name : SYMBOL
number : STRING
count : INTEGER (default 1) name : SYMBOL
type : enum (device-input | from : SYMBOL
device-output | to: SYMBOL
data-abstraction | synchronization : enum
control (required |
algorithm | none)
unknown) coupled-with : SYMBOL
enabled-by : enum (interrupt | importance : enum (low |
timer | high |
access | normal)
object | status : enum (allocated |
nothing | shared |
unknown) unallocated)
execution-time : enum parameters : list of SYMBOLS
(bounded |
indeterminate |
unknown)
importance : enum (low |
high |
normal)
period : FLOAT
status : enum (allocated |
shared |
unallocated)
Figure V-3. Requirenents Model
impl emrented as a set of fact tenplates using CLIPS. Figure V-3

illustrates the CLIPS representation of

For

devi ces,

t he nane, count,

direction,
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attributes cone directly from the OCD. Three attributes extend
t he device nodel: 1) life indicates whether a device generates
interrupts or not, 2) stimulus indicates whether a device nust
be accessed periodically or on demand, and 3) period gives the
frequency with which a periodic device nust be accessed. For
objects, the name, nunber, and count attributes cone from the
OCD. Extensions enable a user to specify additional information
about an object. For exanple, the type attribute allows the
object to be classified; the enabled-by attribute provides a
description of external stimulus required to trigger the object
(where the object is enabled by another object, the enabler
attribute nanmes the enabling object). The user can also specify
whet her the execution tinme for the object is known to be bounded
or whether the execution tinme cannot be determ ned because the
obj ect depends on varying, external conditions. The i nportance
attribute allows an analyst to identify objects with processing
of greater or |esser inportance than other objects.

The nessage entity takes the attributes nane, to, and from

directly from the OCD. Sone extensions enable an analyst to
provide additional infornmation. Messages can be assigned
greater or |esser inportance. An analyst can also identify

nmessages that nust be accepted before the sending object can
continue processing. For exanple, in the CCS, nessages sent
from the Cruise-Controller to the Speed-Controller nust be
accepted before the Cruise-Controller continues processing
because these nessages are issued during transitions in a
finite-state machine. The coupled-with attribute allows an
analyst to identify nessages that are paired wth other
nmessages. For exanple, in the CCS, the GET-REQUEST and
GET- REPLY nessages to and from the Current-Speed object are
coupl ed because one nessages replies the other.

The other portions of the requirements nodel used in the CCS
exanpl e describe inputs, out put s, and interrupts. The
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from : SYMBOL from : SYMBOL
to: SYMBOL to: SYMBOL
type : enum (external | timer | data : SYMBOL

internal)
name : SYMBOL

ENCAPUSLATION

task : SYMBOL
object : SYMBOL

QUEUE Ireason : STRING

name : SYMBOL
task : SYMBOL

name : SYMBOL

type : enum
(asynchronous-device-input |
periodic-device-input |
asynchronous-device-output
periodic-device-output |
control | user-role |
resource-control | task : SYMBOL
periodic-internal | object : SYMBOL
asynchronous-internal |
asynchronous-periodic-internal

LOOSELY-COUPLED-MESSAGE|

| background)|
from : SYMBOL period : FLOAT
to : SYMBOL priority : enum (low |
message : SYMBOL high |
normal)

queue : SYMBOL

A

COMBINED-LCM COMBINED-TCM TIGHTLY-COUPLED-MESSAGE

from : SYMBOL

to : SYMBOL
message : SYMBOL
reply : SYMBOL

from : SYMBOL

to : SYMBOL

message : SYMBOL

queue : SYMBOL
parameters : list of SYMBOLs

NV v

Figure V-4. Design Mde

from : SYMBOL

to : SYMBOL

message : SYMBOL
parameters : list of SYMBOLs

attributes for these entities come directly from the context
di agram and the OCD. The directed arrows in Figure V-3 show
which entities reference other entities. This sinple,
requirenents nodel, while not sufficient for the system
envisioned in Section IV, suffices for the CCS exanple.

In the exanple, an instance of the requirenments nodel that
corresponds to the CCS shown in Figure V-2 is used. Rather than
address the elicitation of unspecified requirenments for the CCS
the instantiation of the nodel is assuned to be conplete. For
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the Engine Sensor, Brake Sensor, and Throttle Actuator, 100 ns
periods are used, and the correspondi ng objects are enabled by a
tinmer. The Cruise Control Lever and Shaft objects are enabl ed
by interrupts, the Current Speed and Cruise Controller objects
by access, and the Speed Controller object by the Cruise
Control |l er object. The Cruise Controller object is assigned a
hi gh inportance because none of the external events affecting
the CCS can be m ssed. Since the CCS nust match the externa
speed of the vehicle to internal goals, the Speed Controller
obj ect has an indeterm nate execution tine.

In addition to conpletely specified requirenments, other
assunptions hold for the CCS exanple. A specific, target
environnment is assuned. The design will execute on a single
processor, and the CCS comunicates with no other subsystem
The wunderlying operating system is assumed to support four
i nter-task comuni cati on mechani smns: si gnal s, first-in,
first-out queues, shared-nenory, and renote-procedure calls.
Two ot her assunptions hold. First, the designer desires, for
conveni ence, to conpress paraneterless nessages between pairs of
tasks into single nessages that contain a type paraneter.
Second, the expert system should use a reasonabl e nam ng schene
to automatically assign human-readable nanes to the design
el enents that are created. These assunptions avoid the need for
target environment elicitation during the CCS exanpl e.

Before discussing the  heurisitics wused to «create a
hi gh-level, design for the CCS, the design nodel nust be
descri bed. The design nodel, shown in Figure V-4, s
i mpl emented in CLIPS using facts tenplates. The nmin entity is
the task (in the exanple considered here, nodule structuring is
not addressed). Task attributes include a type, an optional
period, and a priority. Each task includes an interface that
consists potentially of queues, events, data, and nessages (both
| oosely- and tightly-coupled). These conponents of the
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Rl1: if an object is a device input object and
t he associ ated device is Active
t hen generate an asynchronous device input task

R2: if an object is a device input object and
t he associ ated device is Passive and
the associ ated device is Polled

then generate a periodic device input task

R4: if an object is a device output object and
t he associ ated device is Passive and
t he associ ated device is not accessed on demand
then generate a periodic device output task

R5: if an object is a control object
then generate a control task

RO: if an objectA is an algorithm object and
the objectA is enabled by another objectB and
obj ect A has an indeterm nate execution tine
then generate an asynchronous-periodic internal task

Figure V-5. Active-Cbject-ldentification Rules Used In The CCS
Exanpl e

interface nmay be input to or output from a task. In addition,
each task may enclose, or encapsulate, objects from the
requi renents nodel, and may reference other objects that are not
enclosed in any task. In Figure V-4, the directed arcs show
which entities in the design nodel refer to other entities.
Each directed arc that is drawn w de, and not connected to
another entity in the design nodel, refers to an entity in the
requi renents nodel. The design nodel serves for the purposes of
the CCS exanple, but is not adequate for the nore anbitious
expert systemoutlined in Section IV.

The CCS requirenents specification is transformed into a
design by nmaking a series of decisions encoded as CLIPS rules.
The necessary decisions are grouped into classes with multiple
rules in each class. A class of decisions is represented as a
CLI PS nodul e. Design process knowl edge is represented by
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applying each class of decisions in a specific order. Wt hin

each class, the order of rule execution is unconstrained. For
R2: if an objectA is a data-abstraction or algorithm object
and

objectA is not yet allocated within a task and

obj ect A recei ves nessages frommultiple objects and

t he sending objects are allocated to distinct tasks
t hen denote that the objectA is shared between tasks

R3: if an objectA is shared and
obj ect A receives a nessage from an objectB and
objectB is allocated to a taskJ
then denote that taskJ accesses objectA.

Figure V-6. Passive-Qbject-Assignment Rules Used In The CCS

Exanpl e
the CCS exanple, six classes of decisions were applied in the
foll ow ng order: 1) active-obj ect i dentification, 2)
passi ve- obj ect assi gnnent, 3) active-obj ect cohesi on, 4)
task-interface-nessage mapping, 5) tiner, interrupt, and data

mappi ng, and 6) conveni ent-nmessage conbi nati on. Only the rules

Rl: if taskJ and taskK (J<>K) have equal i nportance
and resonati ng peri ods
then nerge the tasks into a single task

Figure V-7. The Active-Qbject-Cohesion Rule Used In The CCS
Exanpl e

needed to generate a design for the CCS are coded in CLIPS for
each class.*

Five rules, corresponding to Appendix A 1l rules Rl, R2, R4,
R5, and R9, are needed to identify active objects from the CCS
requi renents nodel . These rules are given in sinple form in
Figure V-5. Rule Rl generates a task for each asynchronous,

4 A more complete set of rulesis proposed in Appendix A. Rule numbersin the main text
are keyed to those given in the appendix. The reader should understand that most of the rulesin
Appendix A, proposed as aresult of theoretical analysis, have yet to be verified.

78



CREATE- QUEUE: if no queue exists for taskJ and
taskJ includes an objectA receiving a nessageM
and nessageMis not of high inportance
and nessageM does not require synchronization
then create an input queue for taskJ

Rl: if taskJ includes objectJ and taskK includes objectK
(J<>K)

and objectJ receives nessageM from obj ect K and
messageM i s not of high inportance and

nmessageM does not require synchronization and

an i nput queueQ exists for taskK

then all ocate nmessageM as a | oosel y-coupl ed nessage from
taskK to queueQ of taskJ

R2: if taskJ includes objectJ and taskK includes objectK
(3<>K)

and objectJ receives nessageM from obj ect K and
messageM i s not of high inportance and

nmessageM requi res synchroni zati on and

messageM i s not coupled with another nessage

then all ocate nmessageM as a tightly-coupl ed nmessage from
taskK to taskJ

Fi gure V-8. Rul es For Mapping Messages To Task Interfaces As
Used I n The CCS Exanpl e

I nput device. In the CCS exanple, the Cruise Control Lever and
the Shaft are such devices. Rule R2 identifies all polled,
I nput devi ces (Brake and Engi ne) and generates a task for each.
Rule R4 generates a task for each output device that is not
accessed on demand (that is, nust be periodically strobed).
This rule applies to the Throttle object and the Throttle
Actuator device in the CCS exanple. Rule R5 creates a task for
each control object; only the Cruise Controller qualifies in the
CCs.

The final rule, R9, generates an asynchronous-periodic task
(that is, a task started by sone event and running periodically
until disabled) for algorithm objects with an indeterm nate
execution tine that are enabled by some other object. In the
CCS, this applies only to the Speed Controller. Appendix B. 1.1
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Rl1: if a task includes an object that is activated by a tiner
then allocate an input event of type tiner to the task
interface

R2: if a task includes an object that is activated by an
I nterrupt
then allocate an input event of type interrupt to the
task interface

R3: if a task includes an object that receives data froma
devi ce
then allocate the input data to the task interface

R4a: if a task includes an object that sends data to a device
then allocate the output data to the task interface

Figure V-9. Rules Used In The CCS Exanple To Allocate Tiners,
Interrupts, And Data To Task Interfaces

shows the CLIPS decisions reached for the CCS during the active
object identification step.

After a candidate set of tasks are generated for active
obj ects, passive objects are assigned to tasks. (Al though this
ordering of design decisions works in the current exanple,
assigning passive objects to tasks should be deferred wuntil
after tasks are conbined, using active-object-cohesion rules,
because sone of the tasks to which passive objects are assigned
m ght actually be elimnated.) For the CCS exanple only two
rules are necessary, as shown in Figure V-6. Rule R2 sinply
I dentifies which passive objects are shared. Rul e R3 ensures
that the correct tasks are assigned references to shared,
passive objects. In the CCS exanple, the data-abstraction
obj ect naned Current Speed is accessed by two objects, Shaft and
Speed Controller, previously allocated to separate tasks; thus,
Current Speed becones a shared object, as shown in Appendix
B.1.2.

The next set of design decisions applied to the CCS attenpts
to nerge tasks using a set of cohesion rules. Only one cohesion
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CLCv 1. if two distinct, paraneterless, |oosely-coupled
nessages are sent
fromtaskJ to queueQ of taskK (J<>K)
then create a conbi ned, |oosely-coupled nessage from
taskJ to queueQ of taskK

CLCM 2: if a conbined, |oosely-coupled nessage exists
for taskJ, taskK, and queueQ (J<>K) and
a | oosel y-coupl ed, paraneterl ess nmessageM exi sts
fromtaskJ to queueQ of taskK
t hen nmerge nmessageMinto the conbi ned, | oosely-coupled
nmessage

CLCv1: if two distinct, paranmeterless, tightly-couple
nmessages are sent
fromtaskJ to taskK (J<>K)
then create a conbi ned, tightly-coupled nmessage from
taskJ to taskK

CLCM 2: if a conbined, tightly-coupled nessage exists
for taskJd and taskK (J<>K) and
a tightly-coupl ed, paraneterless nessageM exi sts
fromtaskJ to taskK
t hen nmerge nmessageMinto the conbined, tightly-coupled
nmessage

Figure V-10. Rules Used In The CCS Exanple To Conpress The
Types OF Messages Exchanged Between Tasks

rule, shown in Figure V-7, applies to the CCS exanple. The
Brake and Engi ne periodic tasks have a conparabl e inportance and
a resonating (in fact the sane) period and, so, are nerged into
a single task, as shown in Appendi x B.1.3.

The next step in the design process requires that the
interface for each task be specified. First, nessages are
allocated to each task and then data, tiners, and interrupts are
assigned. Although these decisions are taken in separate steps
for the CCS exanple, nerging them into a single step seens
possible. Figure V-8 shows the rules for task-interface-nessage
mappi ng used in the CCS exanple. The first rule, CREATE- QUEUE
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Figure V-11. High-Level, Concurrent Design For The Cruise
Control System

establishes an input queue for tasks that wll receive
| oosel y-coupl ed nessages. The second rule, Rl, actually
al | ocat es appropriate nessages bet ween obj ect s as

| oosel y-coupl ed nmessages from the sending task into the queue of
the receiving task. The final rule, R2, allocates appropriate
nessages between objects as tightly-coupled nessages, wthout

reply, between tasks. The results of applying these rules to
the CCS problem are given in Appendi x B. 1. 4.

The rules for mapping data, interrupts, and tiners are
presented in Figure V-9 These sinple rules provide the

housekeepi ng needed to nmap device interrupts, input and output
data, and system tinmers to the correct task interfaces. The
results of applying these rules to the CCS requirenments
speci fication are shown in Appendi x B.1.5.
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The final design step applied to the CCS exanple sinply finds
i nstances of paraneterless nessages flowing between pairs of
tasks and then conpresses those nessages into single nessages
with a paraneter to identify which of the original nessages is
i ntended.® This approach tends to reduce the nunber of nessages
shown on task architecture diagrans. The rules for
acconplishing the conpression are shown in Figure V-10. One
pair of rules applies to |oosely-coupled nessages and the other
applies to tightly-coupled nessages w thout reply. In each
case, one rule identifies the need for conpression and creates a
conpressed nessage, while the second rule conbines specific
nmessages into the appropriate, conpressed nessage. The results
of executing these rules for the CCS application are shown in
Appendi x B. 1. 6.

Appendi x B contains the task specifications (B.2.1 to B.2.6)
produced by a CLIPS inplenentation of the foregoing rules
applied to the cruise-control system A task architecture
diagram illustrating the high-level design generated by the
expert system is shown in Figure V-11. Si x tasks (represented
as parallelograns) are used in the design. In the |ower, right
corner of each task icon a reference to the appropriate task
description in Appendix B is shown. The seven objects fromthe
requi renents specification are included in the design as nodul es
(represented as rectangles). Modul es shown within a task are
encapsul ated by that task; shared nodules (only Current-Speed in
the exanple) are depicted outside of any task with directed arcs
showi ng which tasks wite and read to the nodul es. Timers and
interrupts are drawn as directed, lightening flashes. [Input and
output data to the tasks appear in the form of directed arcs
comng from or going to, respectively, the outside of each
applicable task. The Cruise-Controller Control task processes a

> These rules are not included in Appendix A because they are not essential to create

concurrent designs.
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queue (Queued4l3) which receives |oosely-coupled nessages from
three tasks. The Cruise-Controller_Control task also sends
tightly-coupled nessages (without reply) to the Speed-Controller
_Algorithm task. The Speed-Controller_Algorithm task sends
tightly-coupled SET nessages to the Throttl e_Qut put task.

Wi | e this crui se-contr ol exanpl e denonstrat es t hat
concurrent designs can be generated using heuristics represented
as rules in an expert system a nunber of the research problens
identified in Section IV have yet to be addressed. First, the
exanple does not deal wth the elicitation of requirenents
information, nor wth the elicitation of target-environnent
descri ptions. Further, the case study does not address the
generation of alternative designs based on target-environment
descri ptions. The exanple also does not include techniques for
identifying wunallocated requirenents entities; nor does the
exanpl e exercise the majority of the rules (see Appendix A) for
identifying and nerging active objects. The issue of task
i nversion remains to be addressed. Mdule structuring rules are
not I ncl uded, especially those needed to define nodule
i nterfaces.

O her research issues, though addressed in the exanple, need
further consideration. For exanple, only ad hoc know edge of
the design process is applied to the case study. Phases in the
design process need clear identification so that design rules
can be partitioned accordingly and so that the order of design
phases can be investigated independently. Anot her shortcom ng
of the approach used in the case study involves the nodels. The
target-environnment description nodel is not addressed at all.
Wiile a requirenents-specification nodel and a design nodel are
defined for the exanple, several inprovenents are necessary.
These nodel s m ght better be repr esent ed usi ng an
obj ect-oriented approach, rather than with the structured facts
used in the case study. Usi ng object-oriented nodels should
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result in less cluttered antecedents for the design rules.® In
addition, navigating through the nodels, as required in sone
cases, can be better acconplished using links within the nodel
rather than wusing rules.’ No matter how each nodel is
represented, nore thought nust be given to the semantics of the
nodel s. Nei ther the requirenents-specification nodel nor the
design nodel used in the exanple is conplete. For exanple, the
only neans to explain design decisions is to review the stream
of consciousness output by the CLIPS program A better
expl anati on facility S needed. In t he
requi renent s-specification nodel, the EDLC object communication
diagrans are not represented faithfully. No provision exists in
the requirenents-specification nodel for representing subsystens
(and no rules handle interfaces between subsystens). Finally,
the design nodel requires a strategy for nam ng design elenents
as they are generated. In the exanple, a single, ad hoc nam ng
schene is used.

VI . Concl usi ons

Reuse has long been recognized as a key to inproving the
productivity of software developers and the quality of software
products. Unfortunately, a large set of difficult problens
inhibit software reuse. First anong these is the | ow popul ation
of reusable software conponents, particularly architectures into
whi ch such conponents can be fitted. This problem bars progress
in the generation of software from domai n nodel s.

The present paper proposed to reuse design know edge,
represented within an expert system to generate concurrent
designs from object-oriented, target specifications output from

6

Using structured rules requires that each attribute needed in the rule consequent be
matched in the antecedent even where those attributes play no part in the rule conditions. This
tends to obscure the conditions that trigger the rule.

! Using rules to chain through links in a graph can become tediously complicated.
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a domain nodel. An architecture for a designer’s expert
assi stant was descri bed. The architecture begins with object
comuni cation diagrans (OCDs) that form a part of the domain
nodel i ng | anguage included in the Evolutionary Domain Life Cycle
(EDLC) . After eliciting mssing information about the
requi renents and about the target-environnent, the designer’s
expert assi st ant appl i es desi gn- deci si on heuri stics and
desi gn- process know edge to transform an OCD into a concurrent
design. This approach should inprove the productivity of novice
designers and should also increase the consistency of concurrent
desi gns. For experienced designers, an expert assistant can
facilitate the generation of alternative designs. Using the
proposed approach, a repository of designs for famlies of
systens can be popul at ed.

A case study denonstrated the feasibility of the proposed

appr oach. The OCD for a cruise-control system was transforned
into a concurrent design using a CLIPS inplenentation. The
exanpl e investigated: 1) a representation for the requirenents

and design nodel, 2) rules for nmaking design decisions, and 3)
net hods for representing design-process know edge. During the
i nvestigation, a nunber poi nt s becanme clear. First,
object-oriented nethods can provide a better representation of
the requirements and design nodels then can the fact-based
approach used in the exanple. Second, design decisions should
be classified so that a potentially large rule set can be
partitioned for easier conprehension and naintenance. Wt hin
each class of design decisions, the order of rule evaluation
should be made irrelevant, if possible. Third, design-process
know edge shoul d be inplenented as an ordering anong the cl asses
of desi gn deci sions.

A nunber of issues were not addressed during the case study.
Elicitation of requirenents and target-environnent infornmation
were not investigated. I nterfaces between the subsystem under
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design and other subsystens were not considered. Al ternative
designs were not perntted. Only a single, ad hoc, nam ng
scheme was inplenmented to identify design elenents. Al t hough
the case study verified only a subset of possible design rules,
a nore conplete set of heuristics was given in Appendix A

A designer’s expert assistant could Ilead to severa
advant ages. First, when coupled with a domain nodeling and
anal ysis nmethod such as the EDLC, a design generator can bridge
the gap between a problem analysis and a high-level design for a
concurrent solution. Once a design exists, the design nodel can
be subjected to various forns of static and dynam c analysis
using automated nmethods to assess the function and performance
of the design. Third, a generated design will be conplete and
consistent relative to the requirenents specification, or else
any om ssion from the requirenents specification will be known
explicitly. Fourth, a designer’s expert assistant will codify
and dissem nate good design practice in a form that can help
i nexperi enced designers create acceptable designs for concurrent
sof tware. The resulting designs should be produced faster and
with fewer mstakes than would otherwi se be the case. Fifth,
produci ng designs quickly should facilitate early detection of

flaws in the domain nodel. The earlier in the devel opnent
life-cycle that errors are found, the cheaper it wll be to
correct them Flaws in a domain nodel wll be even nore

expensive than flaws in the analysis for a single system because
the analysis within a domain nodel is reused nore readily in
many devel oprment projects. Sixth, producing alternative designs
can help a designer to consider the ramfications of various
deci sions on the cost and performance of the resulting software.
Wt hout autonated assistance, the cost of generating alternative
designs can be prohibitive. Finally, automated assistance can
help to generate a popul ation of designs that can be reused on
future devel opnents.
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Every problem faced by designers of concurrent software is
not yet anenable to an automated sol ution; however, a nunber of
design heuristics appear adaptable to encoding within an expert
system More investigation is needed to determine how best to
represent requirenents and designs, to adapt and verify
addi ti onal desi gn heuri sti cs, to distill desi gn- process
knowl edge into a form that can gui de design decision-making, and
to define factors that | ead designers to select anong
alternatives for specific decisions.
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APPENDIX A. SOME PROPOSED DESIGN HEURISTICS EXPRESSED ASRULES

This appendix contains a set of design heuristics that might be applied to construct a
concurrent design for software from the OCD (object communication diagram) view of a target
specification generated from an EDLC (Evolutionary Domain Life Cycle) model. These
heuristics can also be applied to any OOA (object-oriented analysis) specification that can be
expressed using an OCD view. Aswith any heuristics that embody human knowledge, the rules
specified below do not represent a complete set of design knowledge (indeed, as described in the
main text, other design knowledge might include: design-process  knowledge,
priority-assignment  knowledge, task-inversion knowledge, and performance-evauation
knowledge). In addition, further work is needed to verify and validate the proposed rules.

The rules are presented in five categories. Section A.1 contains rules intended to identify
active objects from the specification and to encapsulate those objects into various types of tasks.
Section A.2 presents rules for assigning passive objects to tasks. Section A.3 defines rules for
merging tasks. Section A.4 gives rules for mapping object messages to task interfaces. Section
A.5 contains rules for mapping timers, interrupts, and data to task interfaces.

A.1 Active Object I dentification Rules

R1: if object; isaDevice Input Object and
the device associated with object, generates interrupts
then
wrap object, in an Asynchronous Device Input Task

R2: if object isaDevice Input Object and
the device associated with object, is Passive and
the device associated with object; must be polled
then
wrap object, in a Periodic Device Input Task

R3: if object isaDevice Output Object and
the device associated with object, generates interrupts
then
wrap object. in an Asynchronous Device Output Task

R4: if object isaDevice Output Object and
the device associated with object, is Passive and
the device associated with object, must be strobed
then
wrap object. in a Periodic Device Output Task
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R5:

R6:

R14:

R8:

RO:

R10:

R11:

if object; isa Control Object
then
wrap object. in a Control Task

if object isaUser Role Object
then
wrap object, in aUser Role Task

if object, isaDevice Output Object and
the device associated with object, is Passive and
the device associated with object, need not be strobed and
object, receives messages from more than one other object
then
wrap object, in a Resource Control Task

if object isan Algorithm Object and
object, must execute periodically and
object; is not enabled by an object,

then
wrap object, in a Periodic Internal Task

if object isan Algorithm Object and

object; enables object; and

object; has an indeterminate execution time
then

wrap object, in an Asynchronous Internal Task

if object isan Algorithm Object and
object; enables object; and
object, has a period
then
wrap object, in an Asynchronous-Periodic Internal Task

if object, isan Algorithm Object and
object; is not enabled by an object; and
object; has an indeterminate execution time
then
wrap object, in a Background Task
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A.2 Passive Object Assignment Rules

R1:  if object isan Algorithm Object or a Data Abstraction Object and
object, is not encapsulated in atask and
object; is accessed from a single task,
then
encapsulate object; in task,

R2: if object isan Algorithm Object or a Data Abstraction Object and
object, is not encapsulated in a task and
object, is accessed from multiple tasks
then
denote object; as a shared object

R3: if object isshared and
object; receives a message from object; and
object; is encapsulated in task,
then
denote that task, references object,

A.3 Active Object Cohesion Rules

R1: if task isaPeriodic Device Input Task and
task, is a Periodic Device Input Task and
the period of task; resonates with the period of task, and
the importance of task; is comparable with the importance of task,
then
merge task; with task,

R2: if task;isaPeriodic Device Output Task and
task, is a Periodic Device Output Task and
the period of task; resonates with the period of task, and
the importance of task; is comparable with the importance of task,
then
merge task; with task,

R3: if task isaPeriodic Internal Task and
task, isaPeriodic Internal Task and
the period of task; resonates with the period of task, and
the importance of task; is comparable with the importance of task, and
task; and task, are related functionaly
then
merge task; with task,
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R4: if task;isaControl Task and
task; receives messages from task, and
task; receives messages from no other task and
task, isa Periodic Internal Task
then
merge task; and task, asingle Periodic Internal Task

R5: if task isaControl Task and
task; sends messages to task, and
task, is an Asynchronous Internal Task and
task, must finish before task; can continue
then
merge task; and task, into asingle Control Task

R6: if task; isan Asynchronous-Periodic Internal Task and
task, is an Asynchronous-Periodic Internal Task and
task; is enabled by task; and
task, is enabled by task, and
task; and task, are mutually exclusive

then
merge task; and task,

A.4 Rules For Mapping Object Messages To Task I nterfaces

To a large extent, the mapping of object messages to task interfaces depends upon the
messaging facilities supported by the target, run-time system. Most run-time systems provide
message queuing facilities between tasks to handle routine communications and also support a
synchronization mechanism that embodies inter-task procedure cals (i.e., tightly-coupled
messages, with reply). The existence of other forms of synchronization, such as tightly-coupled
messages, without reply, is less certain. When a design requires that some messages exceed
others in importance, several techniques might be available to support the requirements. For
example, arun-time system might facilitate priority message queuing between tasks. In other
run-time systems, multiple queues might be required (coupled to a message servicing discipline)
to achieve the same effect. In still other systems, a signalling mechanism might be available to
serve such needs.

The rules that follow assume that the run-time system supports. 1) loosely-coupled
message queues of a single priority, 2) tightly-coupled message passing, both with and without
reply, and 3) an inter-task signalling mechanism where signals are of equal priority. Design
heuristics to support other assumptions can be defined. In fact, part of the design process might
include selecting the messaging facilities available in the intended, run-time system and then
using an appropriate set of design rules for that portion of the design process devoted to defining
task interfaces.
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R1: if task; receives message, from task; and
the importance of message . is normal and
message, requires no synchronization
then
map message,, to aloosely-coupled interface from task; to task;

R2: if task; receives message, from task; and
the importance of message_ is normal and
message,, requires synchronization and
message,, is not coupled to another message
then
map message,, to atightly-coupled interface, without reply, from task;
to task;

R3: if task; receives message, from task; and
the importance of message,, is normal and
message,, requires synchronization and
message,, is coupled to another message,
then
map message,, to atightly-coupled interface, with reply, from task; to task; and
map message, to the reply on the same interface from task; to task;

R4: if task; receives message, from task; and
message,, has no parameters and
the importance of message,, is high
then
map message,, to an internal event from task; to task;

A.5 Rulesfor Mapping Interrupts, Timers, and Data to Task I nterfaces

R1: if task; encapsulates an object, and
object, is enabled by atimer and
then
map a system timer event to the event input interface for task,

R2: if task; encapsulates an object, and
object, is enabled by an interrupt from
adevice associated with object,
then
map the interrupt from device to an external event input for task;
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R3:

R4:

iIf task, encapsulates an object, and
object, is associated with adevice and
device provides system inputs
then
map the input from device, to a data input for task,

iIf task, encapsulates an object, and
object, is associated with a device and
device receives system outputs
then
map the outputs to a data output from task; to device

103



